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Concat

The function concat concatenates a list of 
lists into one long list.
? concat [[1,2],[3,2,1]]
[1,2,3,2,1]

Definition
concat :: [[α]] → [α]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Basic property:
concat (xss ++ yss) = concat xss ++ concat yss
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Take and drop

The function take and drop each take a 
nonnegative integer n and a list xs as 
arguments. 
n The value take n xs consists of the first n

elements of xs
n The value drop n xs is what remains
? take 3 “functional”
“fun”
? drop 3 “functional”
“ctional”

? take 3 [1,2]
[1,2]
? drop 3 [1,2]
[]
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Take and drop

Definitions:
take :: Int à [α] à [α]
take 0 xs = []
take n [] = []
take (n+1)(x:xs) = x:take n xs

drop :: Int à [α] à [α]
drop 0 xs = xs
drop n [] = []
drop (n+1)(x:xs) = drop n xs
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Take and drop

These definitions use a combination of 
pattern matching with natural numbers 
and lists.
Patterns are disjoint and cover all 
possible cases.
n Every natural number is either zero (first 

equation) or 
n The successor of a natural number

Distinguish between an empty list (second 
equation) and
A nonempty list (third equation).
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Take and drop

There are two arguments on which pattern 
matching is performed
n Pattern matching is performed on the clauses of a 

definition in order from the first to the last.
n Within a clause, pattern matching is performed from 

left to right.
? take 0 ⊥
[]
? take ⊥ []
⊥
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Take and drop

The functions take and drop satisfy a 
number of useful laws:

take n xs ++ drop n xs = xs

for all (finite) natural numbers n and all 
lists xs.

take ⊥ xs ++ drop ⊥ xs = ⊥ ++ ⊥ = ⊥

not xs.
take m ⋅ take n = take (m min n)
drop m ⋅ drop n = drop (m + n)
take m ⋅ drop n = drop n ⋅ take(m + n)
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List index

A list xs can be indexed by a natural 
number n to find the element appearing at 
position n.
This operation is denoted by xs !! n
? [1,2,3,4]!!2
3
? [1,2,3,4]!!0
1

n Indexing begins at 0.
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List index

Definition
(!!) :: [α] à Int à α
(x:xs)!!0 = x
(x:xs)!!(n+1) = xs!!n

Indexing is an expensive operation since 
xs!!n takes a number of reduction steps 
proportional to n.
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Map

The function map applies a function to each 
element of a list.
? map square [9,3]
[81,9]

? map (<3) [1,2,3]
[True,True,False]

? map nextLetter “HAL”
“IBM”
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Map: definition

The definition is
map :: (α→β)→[α]→[β]
map f [] = []
map f (x:xs) = f x:map f xs

The use of map is illustrated by the 
following example: 
n “the sum of the squares of the integers from 1 up to 

100”

n The function sum and upto can be defined by
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Map: example

sum :: (Num α)⇒[α]→α
sum [] = 0
sum (x:xs) = x + sum xs
upto :: (Integral α)⇒α→α→[α]
upto m n = if m > n then [] 

else m:upto(m+1)n

? sum(map square(upto 1 100))
338700

[m..n] = upto m n
[m..] = from m
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Map: laws

map id = id
n Applying the identity function to every element of a 

list leaves the list unchanged.
The two occurrences of id have different types; on the left 
id :: α → α, and on the right id :: [α] → [α]

map (f ⋅ g) = map f ⋅ map g
n Applying g to every element of a list, and the 

applying f to each element of the result gives the 
same result as applying f ⋅ g to the original list.
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Map: laws
f ⋅ head = head ⋅ map f
map f ⋅ tail = tail ⋅ map f
map f ⋅ reverse = reverse ⋅ map f
map f ⋅ concat = concat ⋅ map(map f)
map f (xs ++ ys) = map f xs ++ map f ys

The common theme behind each of these equations 
concern the types of the functions involved:

head :: [α] → α
tail :: [α] → [α]
reverse :: [α] → [α]
concat :: [[α]] → [α]
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Map: laws

Those functions do not depend in any way on 
the nature of the list elements.
n They are simply combinators that shuffle, rearrange, 

or extract elements from lists.
n This is why they have polymorphic types.

We can either ‘rename’ the list elements (via 
map f) and then do the operation, or do the 
operation and then rename the elements.
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Filter

The function filter takes a boolean
function p and a list xs and return that 
sublist of xs whose elements satisfy p.

? filter even [1,2,4,5,32]
[2,4,32]

? (sum ⋅ map square ⋅ filter even) [1..10]
220
n The sum of the squares of the even integers in the range 1 to 10
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Filter: definition

filter :: (α→Bool)→[α]→[α] 
filter p [] = []
filter p (x:xs) = if p x then x:filter p xs

else filter p xs

Some laws
filter p ⋅ filter q = filter (p and q)
Filter p ⋅ concat = concat ⋅ map(filter p)
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Zip

The function zip takes two lists and 
returns a list of pairs of corresponding 
elements.

? zip [0..4] “hello”
[(0,’h’),(1,’e’),(2,’l’),(3,’l’),(4,’o’)]

? zip [0,1] “hello”
[(0,’h’),(1,’e’)]
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Zip: definition

If two lists do not have the same length, 
then the length of the zipped list is the 
shorter of the lengths of the two 
arguments.
zip :: [α]→[β]→[(α,β)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y):zip xs ys 
n What would happen if we just defined zip [] []

instead of the two basic cases.
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Unzip

The function unzip takes a list of pairs and 
unzips it into two lists.
? unzip [(1,True),(2,True),(3,False)]
([1,2,3],[True,True,False])

Definition
unzip :: [(α,β)]→([α],[β])
unzip = pair(map fst, map snd)
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Unzip

Two basic functions on pairs are fst and snd, 
defined by:
fst :: (α,β) → α
fst (x,y) = x
snd :: (α,β) → β
snd (x,y) = y

A basic function that takes pairs of functions as 
arguments:
pair :: (α→β,α→γ)→α→(β,γ)
pair (f,g) x = (f x, g x)
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Insertion Sort

sort [] = []

sort (x : xs) = insert x (sort xs)
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Insertion

insert x (y : ys) 

| x<=y = x : y : ys

| x>y   = y : insert x ys

insert x [] = [x]

y z ...uw

x
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Sorting: example

sort [3,1,2]

insert 3 (sort [1,2])

insert 3 (insert 1 (sort [2]))

insert 3 (insert 1 (insert 2 (sort [])))

insert 3 (insert 1 (insert 2 [])))

insert 3 (insert 1 [2])

insert 3 [1, 2]

1 : insert 3 [2]

1 : 2 : insert 3 []

1 : 2 : [3]

[1, 2, 3]
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What is the type of sort?

Can sort many
different types of

data.
But not all!

Consider a list of functions, for example...

The Type of Sort

sort :: [a] -> [a]
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sort :: Ord a => [a] -> [a]

If a has an
ordering...

…then sort has
this type.

Sort has this type because

(<=) :: Ord a => a -> a -> Bool

Overloaded, rather than
polymorphic.

The Correct Type of Sort
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Polymorphism vs. Overloading

A polymorphic function works in the same 
way for every type 
n Example: length, ++

An overloaded function works in different 
ways for different types
n Example: ==, <=
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A Better Way of Sorting

Divide the list into two roughly equal 
halves.

Sort each half.

Merge the sorted halves together.
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Merge Sort: definition

mergeSort xs = merge (mergeSort front) 

(mergeSort back)

where size = length xs `div` 2

front = take size xs

back = drop size xs

But when are front and back smaller than xs?



6

31Chapter 15: Functional Programming

MergeSort with Base Cases

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs | size > 0 = 

merge (mergeSort front) 

(mergeSort back)

where size = length xs `div` 2

front = take size xs

back = drop size xs
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Merging: example

x

y

x <= y?

merge [1, 3] [2, 4] 1 : merge [3] [2, 4]

1 : 2 : merge [3] [4]

1 : 2 : 3 : merge [] [4]

1 : 2 : 3 : [4] [1,2,3,4]
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Defining Merge

merge :: Ord a => [a] -> [a] -> [a]

merge (x : xs) (y : ys)

| x <= y = x : merge xs (y : ys)

| x > y = y : merge (x : xs) ys

merge [] ys = ys

merge xs [] = xs

One list gets
smaller.

Two possible
base cases.

Requires an
ordering.
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Insertion Sort
Sorting n elements

takes n*n/2 comparisons.

Merge Sort
Sorting n elements

takes n*log2 n comparisons.

Num elements Cost by insertion Cost by merging

10 50 40

1000 500000 10000

1000000 500000000000 20000000

The Cost of Sorting
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Summary: List Recursion

Recursive case: expresses the results in 
terms of the same function on a shorter 
list.
n f (x:xs) = … f xs …

Base case(s): handles the shortest 
possible list. 
n f [] = …
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Input

A string representing a text containing many words. 
For example

“hello clouds hello sky”

clouds: 1
hello: 2
sky: 1

Example: Counting Words

Output
A string listing the words in order, along with how 
many times each word occurred.

“ clouds: 1\nhello: 2\nsky: 1“
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Step 1: Breaking Input into 
Words

“hello clouds hello sky”

[“hello”, “clouds”, “hello”, “sky”]

words
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Step 2: Sorting the Words

[“clouds”, “hello”, “hello”, “sky”]

sort

[“hello”, “clouds”, “hello”, “sky”]
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The groupBy Function

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

groupBy p xs -- breaks xs into segments [x1,x2…], such 
that p xi is True for each xi in the 
segment.

groupBy (<) [3,2,4,1,5] = [[3], [2,4], [1,5]]

groupBy (==) “hello” = [“h”, “e”, “ll”, “o”]
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Step 3: Grouping Equal Words

[[“clouds”], [“hello”, “hello”], [“sky”]]

groupBy (==)

[“clouds”, “hello”, “hello”, “sky”]
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Step 4: Counting Each Group

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

map (λws -> (head ws, length ws))

[[“clouds”], [“hello”, “hello”], [“sky”]]

42Chapter 15: Functional Programming

Step 5: Formatting Each Group

[“clouds: 1”, “hello: 2”, “sky: 1”]

map (λ(w,n) -> w++show n)

[(“clouds”,1), (“hello”, 2), (“sky”,1)]
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Step 6: Combining the Lines

“clouds: 1\nhello: 2\nsky: 1\n”

unlines

[“clouds: 1”, “hello: 2”, “sky: 1”]

clouds: 1
hello: 2
sky: 1
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The Complete Definition

countWords :: String -> String

countWords s =

unlines .

map (λ(w,n) -> w++show n) .

map (λws -> (head ws, length ws)) .

groupBy (==) .

sort .

words s
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Trees

Any recursive data type that exhibits a 
nonlinear structure is generically called a 
tree.
The syntactic structure of arithmetic or 
functional expressions can also be 
modeled by a tree.
There are numerous species and 
subspecies of tree.
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Trees

Trees can be classified according to
n The precise form of the branching structure
n The location of information within the tree

n The relationship between the information 
stored in different parts of the tree
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Binary Trees

A binary tree is a tree with a simple two-way 
branching structure.

data Btree α = Leaf α | Fork(Btree α)(Btree α)
n A value of Btree α is either a leaf node, which contains 

a value of type α, or a fork node , which consists of two 
further trees, called the left and right subtrees of the 
node.

n A leaf is sometimes called an external node, or tip, and a 
fork node is sometimes called an internal node.
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Binary Trees

Example:
Fork(Leaf 1)(Fork(Leaf 2)(Leaf 3))
n Consists of a node with a left subtree Leaf 1 and a 

right subtree which consists of a left subtree Leaf 2
and a right subtree Leaf 3.

Fork(Fork(Leaf 1)(Leaf 2))(Leaf 3)
n Contains the same sequence of numbers in its leaves 

but the way the information is organized is different.
n The two expressions denote different values.
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Trees: size

The size of a tree is the number of its leaf 
nodes.
size :: Btree α → Int
size (Leaf x) = 1
size (Fork xt yt) = size xt + size yt
n The function size plays the same role for trees as 
length does for lists.

size = length ⋅ flatten , where
Flatten :: Btree α → [α]
Flatten (Leaf x) = [x]
Flatten (Fork xt yt) = flatten xt ++ flatten yt
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Trees: height

The height of a tree measures how far away 
the furthest leaf is.
height :: Btree α → Int
height (Leaf x) = 0
height (Fork xt yt) = 1 +

(height xt max height yt)
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Reductions

Reduction sequence: square (3+4)
Two reduction policies
n Innermost reduction : a reduction that 

contains no other reduction.

n Outermost reduction: a reduction that is 
contained in no other reduction.

Other example: fst (square 4, square 2)
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Outermost Reduction

Sometimes outermost reduction will give 
an answer when innermost fails to 
terminate.
If both methods terminate, then they give 
the same result.
Outermost reduction has the important 
property that if an expression has a normal 
form then the outermost reduction will 
compute it.
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Outermost Reduction

Is outermost reduction a better choice than 
innermost reduction?
Problem: outermost reduction can 
sometimes require most steps than 
innermost reductions.
n The problem arises with any function whose 

definition contains repeated occurrences of an 
argument.
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Outermost Reduction

The problem can be solved by representing 
expressions as graphs rather than trees.
n Unlike trees, graphs can share subexpressions.

Example: the expression (3+4) * (3+4)

n Each occurrence of 3+4 is represented by an arrow, 
called a pointer, to a single instance of (3+4)

(  *  ) ( 3 + 4 )
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Outermost Reduction

Using outermost graph reduction has only 
three steps.
n The representation of expressions as graphs 

means that duplicated subexpressions can be 
shared and reduced at most once.

With graph reduction, outermost reduction 
never takes more steps than innermost 
reduction.
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Lazy vs. Eager Evaluation

Outermost graph reduction is called lazy 
evaluation.
Innermost graph reduction is called 
eager evaluation.
Lazy evaluation is adopted by Haskell:

1. It terminates whenever any reduction order 
terminates.

2. It requires no more (and possibly fewer) 
steps than eager evaluation.


