
1

Chapter 15

Functional Programming

2Chapter 15: Functional Programming

Topics

Lists Operations

Trees

Lazy Evaluation

3Chapter 15: Functional Programming

Concat

The function concat concatenates a list of
lists into one long list.
? concat [[1,2],[3,2,1]]
[1,2,3,2,1]

Definition
concat :: [[α]] → [α]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Basic property:
concat (xss ++ yss) = concat xss ++ concat yss

4Chapter 15: Functional Programming

Take and drop

The function take and drop each take a
nonnegative integer n and a list xs as
arguments.
n The value take n xs consists of the first n

elements of xs
n The value drop n xs is what remains
? take 3 “functional”
“fun”
? drop 3 “functional”
“ctional”

? take 3 [1,2]
[1,2]
? drop 3 [1,2]
[]

5Chapter 15: Functional Programming

Take and drop

Definitions:
take :: Int à [α] à [α]
take 0 xs = []
take n [] = []
take (n+1)(x:xs) = x:take n xs

drop :: Int à [α] à [α]
drop 0 xs = xs
drop n [] = []
drop (n+1)(x:xs) = drop n xs

6Chapter 15: Functional Programming

Take and drop

These definitions use a combination of
pattern matching with natural numbers
and lists.
Patterns are disjoint and cover all
possible cases.
n Every natural number is either zero (first

equation) or
n The successor of a natural number

Distinguish between an empty list (second
equation) and
A nonempty list (third equation).

2

7Chapter 15: Functional Programming

Take and drop

There are two arguments on which pattern
matching is performed
n Pattern matching is performed on the clauses of a

definition in order from the first to the last.
n Within a clause, pattern matching is performed from

left to right.
? take 0 ⊥
[]
? take ⊥ []
⊥

8Chapter 15: Functional Programming

Take and drop

The functions take and drop satisfy a
number of useful laws:

take n xs ++ drop n xs = xs

for all (finite) natural numbers n and all
lists xs.

take ⊥ xs ++ drop ⊥ xs = ⊥ ++ ⊥ = ⊥

not xs.
take m ⋅ take n = take (m min n)
drop m ⋅ drop n = drop (m + n)
take m ⋅ drop n = drop n ⋅ take(m + n)

9Chapter 15: Functional Programming

List index

A list xs can be indexed by a natural
number n to find the element appearing at
position n.
This operation is denoted by xs !! n
? [1,2,3,4]!!2
3
? [1,2,3,4]!!0
1

n Indexing begins at 0.

10Chapter 15: Functional Programming

List index

Definition
(!!) :: [α] à Int à α
(x:xs)!!0 = x
(x:xs)!!(n+1) = xs!!n

Indexing is an expensive operation since
xs!!n takes a number of reduction steps
proportional to n.

11Chapter 15: Functional Programming

Map

The function map applies a function to each
element of a list.
? map square [9,3]
[81,9]

? map (<3) [1,2,3]
[True,True,False]

? map nextLetter “HAL”
“IBM”

12Chapter 15: Functional Programming

Map: definition

The definition is
map :: (α→β)→[α]→[β]
map f [] = []
map f (x:xs) = f x:map f xs

The use of map is illustrated by the
following example:
n “the sum of the squares of the integers from 1 up to

100”

n The function sum and upto can be defined by

3

13Chapter 15: Functional Programming

Map: example

sum :: (Num α)⇒[α]→α
sum [] = 0
sum (x:xs) = x + sum xs
upto :: (Integral α)⇒α→α→[α]
upto m n = if m > n then []

else m:upto(m+1)n

? sum(map square(upto 1 100))
338700

[m..n] = upto m n
[m..] = from m

14Chapter 15: Functional Programming

Map: laws

map id = id
n Applying the identity function to every element of a

list leaves the list unchanged.
The two occurrences of id have different types; on the left
id :: α → α, and on the right id :: [α] → [α]

map (f ⋅ g) = map f ⋅ map g
n Applying g to every element of a list, and the

applying f to each element of the result gives the
same result as applying f ⋅ g to the original list.

15Chapter 15: Functional Programming

Map: laws
f ⋅ head = head ⋅ map f
map f ⋅ tail = tail ⋅ map f
map f ⋅ reverse = reverse ⋅ map f
map f ⋅ concat = concat ⋅ map(map f)
map f (xs ++ ys) = map f xs ++ map f ys

The common theme behind each of these equations
concern the types of the functions involved:

head :: [α] → α
tail :: [α] → [α]
reverse :: [α] → [α]
concat :: [[α]] → [α]

16Chapter 15: Functional Programming

Map: laws

Those functions do not depend in any way on
the nature of the list elements.
n They are simply combinators that shuffle, rearrange,

or extract elements from lists.
n This is why they have polymorphic types.

We can either ‘rename’ the list elements (via
map f) and then do the operation, or do the
operation and then rename the elements.

17Chapter 15: Functional Programming

Filter

The function filter takes a boolean
function p and a list xs and return that
sublist of xs whose elements satisfy p.

? filter even [1,2,4,5,32]
[2,4,32]

? (sum ⋅ map square ⋅ filter even) [1..10]
220
n The sum of the squares of the even integers in the range 1 to 10

18Chapter 15: Functional Programming

Filter: definition

filter :: (α→Bool)→[α]→[α]
filter p [] = []
filter p (x:xs) = if p x then x:filter p xs

else filter p xs

Some laws
filter p ⋅ filter q = filter (p and q)
Filter p ⋅ concat = concat ⋅ map(filter p)

4

19Chapter 15: Functional Programming

Zip

The function zip takes two lists and
returns a list of pairs of corresponding
elements.

? zip [0..4] “hello”
[(0,’h’),(1,’e’),(2,’l’),(3,’l’),(4,’o’)]

? zip [0,1] “hello”
[(0,’h’),(1,’e’)]

20Chapter 15: Functional Programming

Zip: definition

If two lists do not have the same length,
then the length of the zipped list is the
shorter of the lengths of the two
arguments.
zip :: [α]→[β]→[(α,β)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y):zip xs ys
n What would happen if we just defined zip [] []

instead of the two basic cases.

21Chapter 15: Functional Programming

Unzip

The function unzip takes a list of pairs and
unzips it into two lists.
? unzip [(1,True),(2,True),(3,False)]
([1,2,3],[True,True,False])

Definition
unzip :: [(α,β)]→([α],[β])
unzip = pair(map fst, map snd)

22Chapter 15: Functional Programming

Unzip

Two basic functions on pairs are fst and snd,
defined by:
fst :: (α,β) → α
fst (x,y) = x
snd :: (α,β) → β
snd (x,y) = y

A basic function that takes pairs of functions as
arguments:
pair :: (α→β,α→γ)→α→(β,γ)
pair (f,g) x = (f x, g x)

23Chapter 15: Functional Programming

Insertion Sort

sort [] = []

sort (x : xs) = insert x (sort xs)

24Chapter 15: Functional Programming

Insertion

insert x (y : ys)

| x<=y = x : y : ys

| x>y = y : insert x ys

insert x [] = [x]

y z ...uw

x

5

25Chapter 15: Functional Programming

Sorting: example

sort [3,1,2]

insert 3 (sort [1,2])

insert 3 (insert 1 (sort [2]))

insert 3 (insert 1 (insert 2 (sort [])))

insert 3 (insert 1 (insert 2 [])))

insert 3 (insert 1 [2])

insert 3 [1, 2]

1 : insert 3 [2]

1 : 2 : insert 3 []

1 : 2 : [3]

[1, 2, 3]

26Chapter 15: Functional Programming

What is the type of sort?

Can sort many
different types of

data.
But not all!

Consider a list of functions, for example...

The Type of Sort

sort :: [a] -> [a]

27Chapter 15: Functional Programming

sort :: Ord a => [a] -> [a]

If a has an
ordering...

…then sort has
this type.

Sort has this type because

(<=) :: Ord a => a -> a -> Bool

Overloaded, rather than
polymorphic.

The Correct Type of Sort

28Chapter 15: Functional Programming

Polymorphism vs. Overloading

A polymorphic function works in the same
way for every type
n Example: length, ++

An overloaded function works in different
ways for different types
n Example: ==, <=

29Chapter 15: Functional Programming

A Better Way of Sorting

Divide the list into two roughly equal
halves.

Sort each half.

Merge the sorted halves together.

30Chapter 15: Functional Programming

Merge Sort: definition

mergeSort xs = merge (mergeSort front)

(mergeSort back)

where size = length xs `div` 2

front = take size xs

back = drop size xs

But when are front and back smaller than xs?

6

31Chapter 15: Functional Programming

MergeSort with Base Cases

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs | size > 0 =

merge (mergeSort front)

(mergeSort back)

where size = length xs `div` 2

front = take size xs

back = drop size xs

32Chapter 15: Functional Programming

Merging: example

x

y

x <= y?

merge [1, 3] [2, 4] 1 : merge [3] [2, 4]

1 : 2 : merge [3] [4]

1 : 2 : 3 : merge [] [4]

1 : 2 : 3 : [4] [1,2,3,4]

33Chapter 15: Functional Programming

Defining Merge

merge :: Ord a => [a] -> [a] -> [a]

merge (x : xs) (y : ys)

| x <= y = x : merge xs (y : ys)

| x > y = y : merge (x : xs) ys

merge [] ys = ys

merge xs [] = xs

One list gets
smaller.

Two possible
base cases.

Requires an
ordering.

34Chapter 15: Functional Programming

Insertion Sort
Sorting n elements

takes n*n/2 comparisons.

Merge Sort
Sorting n elements

takes n*log2 n comparisons.

Num elements Cost by insertion Cost by merging

10 50 40

1000 500000 10000

1000000 500000000000 20000000

The Cost of Sorting

35Chapter 15: Functional Programming

Summary: List Recursion

Recursive case: expresses the results in
terms of the same function on a shorter
list.
n f (x:xs) = … f xs …

Base case(s): handles the shortest
possible list.
n f [] = …

36Chapter 15: Functional Programming

Input

A string representing a text containing many words.
For example

“hello clouds hello sky”

clouds: 1
hello: 2
sky: 1

Example: Counting Words

Output
A string listing the words in order, along with how
many times each word occurred.

“ clouds: 1\nhello: 2\nsky: 1“

7

37Chapter 15: Functional Programming

Step 1: Breaking Input into
Words

“hello clouds hello sky”

[“hello”, “clouds”, “hello”, “sky”]

words

38Chapter 15: Functional Programming

Step 2: Sorting the Words

[“clouds”, “hello”, “hello”, “sky”]

sort

[“hello”, “clouds”, “hello”, “sky”]

39Chapter 15: Functional Programming

The groupBy Function

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

groupBy p xs -- breaks xs into segments [x1,x2…], such
that p xi is True for each xi in the
segment.

groupBy (<) [3,2,4,1,5] = [[3], [2,4], [1,5]]

groupBy (==) “hello” = [“h”, “e”, “ll”, “o”]

40Chapter 15: Functional Programming

Step 3: Grouping Equal Words

[[“clouds”], [“hello”, “hello”], [“sky”]]

groupBy (==)

[“clouds”, “hello”, “hello”, “sky”]

41Chapter 15: Functional Programming

Step 4: Counting Each Group

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

map (λws -> (head ws, length ws))

[[“clouds”], [“hello”, “hello”], [“sky”]]

42Chapter 15: Functional Programming

Step 5: Formatting Each Group

[“clouds: 1”, “hello: 2”, “sky: 1”]

map (λ(w,n) -> w++show n)

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

8

43Chapter 15: Functional Programming

Step 6: Combining the Lines

“clouds: 1\nhello: 2\nsky: 1\n”

unlines

[“clouds: 1”, “hello: 2”, “sky: 1”]

clouds: 1
hello: 2
sky: 1

44Chapter 15: Functional Programming

The Complete Definition

countWords :: String -> String

countWords s =

unlines .

map (λ(w,n) -> w++show n) .

map (λws -> (head ws, length ws)) .

groupBy (==) .

sort .

words s

45Chapter 15: Functional Programming

Trees

Any recursive data type that exhibits a
nonlinear structure is generically called a
tree.
The syntactic structure of arithmetic or
functional expressions can also be
modeled by a tree.
There are numerous species and
subspecies of tree.

46Chapter 15: Functional Programming

Trees

Trees can be classified according to
n The precise form of the branching structure
n The location of information within the tree

n The relationship between the information
stored in different parts of the tree

47Chapter 15: Functional Programming

Binary Trees

A binary tree is a tree with a simple two-way
branching structure.

data Btree α = Leaf α | Fork(Btree α)(Btree α)
n A value of Btree α is either a leaf node, which contains

a value of type α, or a fork node , which consists of two
further trees, called the left and right subtrees of the
node.

n A leaf is sometimes called an external node, or tip, and a
fork node is sometimes called an internal node.

48Chapter 15: Functional Programming

Binary Trees

Example:
Fork(Leaf 1)(Fork(Leaf 2)(Leaf 3))
n Consists of a node with a left subtree Leaf 1 and a

right subtree which consists of a left subtree Leaf 2
and a right subtree Leaf 3.

Fork(Fork(Leaf 1)(Leaf 2))(Leaf 3)
n Contains the same sequence of numbers in its leaves

but the way the information is organized is different.
n The two expressions denote different values.

9

49Chapter 15: Functional Programming

Trees: size

The size of a tree is the number of its leaf
nodes.
size :: Btree α → Int
size (Leaf x) = 1
size (Fork xt yt) = size xt + size yt
n The function size plays the same role for trees as
length does for lists.

size = length ⋅ flatten , where
Flatten :: Btree α → [α]
Flatten (Leaf x) = [x]
Flatten (Fork xt yt) = flatten xt ++ flatten yt

50Chapter 15: Functional Programming

Trees: height

The height of a tree measures how far away
the furthest leaf is.
height :: Btree α → Int
height (Leaf x) = 0
height (Fork xt yt) = 1 +

(height xt max height yt)

51Chapter 15: Functional Programming

Reductions

Reduction sequence: square (3+4)
Two reduction policies
n Innermost reduction : a reduction that

contains no other reduction.

n Outermost reduction: a reduction that is
contained in no other reduction.

Other example: fst (square 4, square 2)

52Chapter 15: Functional Programming

Outermost Reduction

Sometimes outermost reduction will give
an answer when innermost fails to
terminate.
If both methods terminate, then they give
the same result.
Outermost reduction has the important
property that if an expression has a normal
form then the outermost reduction will
compute it.

53Chapter 15: Functional Programming

Outermost Reduction

Is outermost reduction a better choice than
innermost reduction?
Problem: outermost reduction can
sometimes require most steps than
innermost reductions.
n The problem arises with any function whose

definition contains repeated occurrences of an
argument.

54Chapter 15: Functional Programming

Outermost Reduction

The problem can be solved by representing
expressions as graphs rather than trees.
n Unlike trees, graphs can share subexpressions.

Example: the expression (3+4) * (3+4)

n Each occurrence of 3+4 is represented by an arrow,
called a pointer, to a single instance of (3+4)

(*) (3 + 4)

10

55Chapter 15: Functional Programming

Outermost Reduction

Using outermost graph reduction has only
three steps.
n The representation of expressions as graphs

means that duplicated subexpressions can be
shared and reduced at most once.

With graph reduction, outermost reduction
never takes more steps than innermost
reduction.

56Chapter 15: Functional Programming

Lazy vs. Eager Evaluation

Outermost graph reduction is called lazy
evaluation.
Innermost graph reduction is called
eager evaluation.
Lazy evaluation is adopted by Haskell:

1. It terminates whenever any reduction order
terminates.

2. It requires no more (and possibly fewer)
steps than eager evaluation.

