Chapter 15

Functional Programming

Topics

@Numbers
= Natural numbers
» Haskell numbers
alists
» List notation
= Lists as a data type
= List operations

Chapter 15: Functional Programming 2

Numbers

@Haskell provides a sophisticated
hierarchy of type classes for describing
various kinds of numbers.

@Although (some) numbers are provided
as primitives data types, it is
theoretically possible to introduce them
through suitable data type declarations.

Chapter 15: Functional Programming

Natural Numbers

@The natural numbers are the numbers 0, 1,
2, and so on, used for counting.
@Introduced by the declaration
data Nat = Zero | Succ Nat
= The constructor Succ (short for ‘successor’)
has type Nat > Nat.

= Example: as an element of Nat the number 7
would be represented by
Succ(Succ(Succ(Succ(Succ(Succ(Succ Zero))))))

Chapter 15: Functional Programming 4

Natural Numbers

@Every natural number is represented by a
unique value of Nat .

@0n the other hand, not every value of Nat
represents a well-defined natural number.
=« Example: ~, Succ ~, Succ(Succ ")

@Addition ca be defined by

(+) ;2 Nat > Nat > Nat
m + Zero =m
m + Succ n = Succ(m + n)

Chapter 15: Functional Programming

Natural Numbers

<Multiplication ca be defined by
(x) :: Nat > Nat > Nat
mXx Zero Zero
m x Succ n (mx n) +m

2 Nat can be a member of the type class Eq
instance Eq Nat where
Zero == Zero = True
Zero == Succ n Fal se
Succ m == Zero Fal se
Succ m == Succ n (m==n)

Chapter 15: Functional Programming 6

Natural Numbers

2 Nat can be a member of the type class or d
instance Ord Nat where

Zero < Zero = Fal se
Zero < Succ n = True
Succ m< Zero = Fal se
Succ m < Succ n = (m<n)
@Elements of Nat can be printed by
showNat :: Nat > String
showNat Zer o = “Zero”
showNat (Succ Zero) = “Succ Zero”

showNat (Succ(Succ n)) = “Succ (“ ++
showNat (Succ n) ++ “)”

Haskell Numbers

@Haskell provide, as primitives, the following

types:

= | nt single-precision integers

= | nt eger arbitrary-precision integers

= Fl oat singe-precision floating-point
numbers

= Doubl e double-precision gloating-point
numbers

= Rati onal rational number

Chapter 15: Functional Programming 8

The Numeric Type Classes

@The same symbols, +, X, and so on, are
used for arithmetic on each numeric type.
= Overloaded functions.

@All Haskell number types are instances of
the type class Numdefined by

class (Eq a, Show a) b Num a where

Integral Types

2 The members of the Integral type are two
primitive types I nt and I nt eger .
@The operators di v and nod are provided
as primitive.
= If x and y are integers, and y is not zero, then
x divy =&/ ya
2613.80=13, &13.80=-14
= The value x nod y is defined by the equation
X = (xdivy) *y + (x nmody)

Chapter 15: Functional Programming 10

+), (<), (x) > a>a=>a
negat e a2 a
from nt eger :: Integer 2> a
X —y = X + negate y
Chapter 15: Functional Programming 9
Lists

@lists can be used to fetch and carry data
from one function to another.

@Lists can be taken apart, rearranged, and
combined with other lists.

@Lists can be summed and multiplied.

@Lists of characters can be read and
printed.

L T

Chapter 15: Functional Programming 11

List Notation

2 A finite list is denoted using square brackets and
commas.
- [1,2,3]
= [“hell 0", "goodbye”]

2 All the elements of a list must have the same
type.

@ The empty list is written as[] .

& A singleton list contains only one element
= [x]
- (111 the empty list is its only member

Chapter 15: Functional Programming 12

List Notation

2If the elements of a list all have type a,
then the list itself will be assigned the type
[a].

=« [1,2,3] 2o [Int]
«['h e 17,717 ,70'] :: [Char]

« [[1,2],[3]] o [[1nt]]

s [(+),(X)] o [Int 2> Int > Int]

@A list may contain the same value more
than once.

@Two lists are equal if and only if they
contain the same value in the same order.

Chapter 15: Functional Programming 13

Lists as a data type

@A list can be constructed fro scratch by
starting with an empty list and
successively adding elements one by one.

= Elements can be added to the front of the list,
or the rear, or to somewhere in the middle.

@Data type declaration (list):
data List a = Nil | Cons a (List a)
= The constructor Cons (short for ‘construct’)
add an element to the front of the list.
@[1,2,3] Cons 1 (Cons 2 (Cons 3 Nil))

Chapter 15: Functional Programming 14

Lists as a data type

@In functional programming, lists are
defined as elements of Li st a.
= The syntax [a] is used instead of Li st a.
» The constructor Ni | is written as []

» The constructor Cons is written as an infix
operator (:)
() associates to the right
@[1,2,3] = 1:(2:(3:[])) = 1:2:3:[]

Chapter 15: Functional Programming 15

Lists as a data type

@Like functions over data types, functions
over lists can be defined by pattern
matching.

instance (Eq a) P Eq [a] where

[T =11 = True
[T == (y:ys) = Fal se
(x:xs) == 1] = Fal se

(x:xs) == (y1ys)= (x ==y) U (xs == ys)

Chapter 15: Functional Programming 16

List Operations

@ Some of the most commonly used
functions and operations on lists.

@ For each function: give the definition,
illustrate its use, and state some of its
properties.

Chapter 15: Functional Programming 17

Concatenation

@Two lists, both of the same type, can be
concatenated to form one longer list.

2This function is denoted by the binary
operator ++.
2 [1,2,3] ++ [4,5]
[1,2,3,4,5]
? [1,2] ++ [] ++ [1]
[1,2,1]

Chapter 15: Functional Programming 18

Concatenation

@ The formal definition of ++ is

(++) io [a] > [a] > [4]
[1 ++ys =ys
(x:xs) ++ ys = X: (XS++ys)

= The definition of ++ is by pattern matching
on the left-hand argument.

= The two patterns are disjoint and cover all
cases, apart from the undefined list .

= |t follows by case exhaustion that
A+ ys = A

Chapter 15: Functional Programming 19

Concatenation

= Itis not the case that xs ++ ~ = 7

? [1,2,3] ++ undefined

[1,2,3{Interrupted!}

» Thelist[1,2,3] ++ ~ isa partial list; in full
form it is the list 1: 2: 3: ».

@ The evaluator can compute the first three
elements, but thereafter it goes into a
nonterminating computation, so we interrupt it.

@ Some properties:
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
xs ++ [] =[] ++ Xs = xs

Chapter 15: Functional Programming 20

Reverse

@This function reverses the order of
elements in a finite list.
? reverse [1,2,3,4,5]

[5,4,3,2,1]
@The definition is
reverse o [a] 2> [a]
reverse [] =[]
reverse (X:Xs) = reverse xs ++ [X]

@ In words, to reverse a list (x:xs) one reverses xs
and then adds x to the end.

Chapter 15: Functional Programming 21

Length

@ The length of a list is the number of
elements it contains.

& The definition is

I engt h i [a] 2> Int
length [] =0
length (x:xs) =1 + |ength(xs)

@ The nature of the list elements is
irrelevant when computing the length:
? length [undefi ned, undefi ned]
2

Chapter 15: Functional Programming 22

Length

@ Not every list has a well-defined length.
= The partial lists have an undefined length

@ NoxiNoxiyr A
= Only finite lists have well-defined lengths.

@ Thelist[~, ~] is afinite list, not a partial list
because itisthelist*:~:[], which endsin []
not” . The computer cannot produce the
elements, but it can produce the length of the list.

@ The function length satisfies a distribution
property:
I ength(xs ++ ys) = length xs + length ys

Chapter 15: Functional Programming 23

Head and Talil

% The function head selects the first
element of a nonempty list, and talil
selects the rest:

head o [a] 2> a

head [] = error “enpty list”
head (x:xs) =X

tail o [a] 2 [a]

tail [] = error “enpty list”
tail (x:xs) = XS

= These are constant-time operations, since
they deliver their result in one reduction step.

Chapter 15: Functional Programming

Init and last

@The function last and init select the last
element of a nonempty list and what
remains after the last element has been
removed.

? last [1,2,3,4,5]

5
2init [1,2 3 4,5]
[1,2,3,4]

Chapter 15: Functional Programming 25

Init and last

@First attempt (definition):

| ast :: [a] > a

| ast = head xreverse

init o [a] 2> a

init = reverse xtail Xreverse

@Problem?
« init xs = » for all partial and infinite lists xs

Chapter 15: Functional Programming 26

Init and last

@Second attempt (definition):

last (x:xs) = if null xs then x else |last xs

init (x:xs) =if null xs then [] else x:init xs

@With this definition

« init xs = xs for all partial and infinite lists
XS

Chapter 15: Functional Programming 27

Init and last

@Third attempt (definition):
= Since [x] is an abbreviation for x: []

last [x] = X

last (x:xs) = last xs

init [x] =[]

init (x:xs) = x:init xs
@Problem?

= There is a serious danger of confusion because
the patterns [x] and (x: xs) are not disjoint.

#The second includes the first as a special case.

Chapter 15: Functional Programming 28

Init and last

= If the order of the equations are reversed:

last’ (x:xs) = last’ xs
last’ [x] = X
= The definition of | ast’ would simply be
incorrect.

@l ast’ xs =~

= Itis not a good practice to write definition that
depend critically on the order of the
equations.

Chapter 15: Functional Programming 29

Init and last

@Definition
| ast i [a] 2 a
last [] = error “enpty list”
last [x] =X
last (x:y:ys) = last(y:ys)
init o [a] 2 [a]
init [] = error “enpty list”
init [x] =[]
init [x:y:xs) = x:init(y:xs)

Chapter 15: Functional Programming 30

