
1

Chapter 15

Functional Programming

2Chapter 15: Functional Programming

Topics

Numbers
n Natural numbers
n Haskell numbers

Lists
n List notation
n Lists as a data type
n List operations

3Chapter 15: Functional Programming

Numbers

Haskell provides a sophisticated 
hierarchy of type classes for describing 
various kinds of numbers.
Although (some) numbers are provided 
as primitives data types, it is 
theoretically possible to introduce them 
through suitable data type declarations.

4Chapter 15: Functional Programming

Natural Numbers
The natural numbers are the numbers 0, 1, 
2, and so on, used for counting.
Introduced by the declaration

data Nat = Zero | Succ Nat
n The constructor Succ (short for ‘successor’) 

has type Nat à Nat.

n Example: as an element of Nat the number 7
would be represented by
Succ(Succ(Succ(Succ(Succ(Succ(Succ Zero))))))

5Chapter 15: Functional Programming

Natural Numbers

Every natural number is represented by a 
unique value of Nat.

On the other hand, not every value of Nat
represents a well-defined natural number.
n Example: ⊥, Succ ⊥, Succ(Succ ⊥)

Addition ca be defined by
(+) :: Nat à Nat à Nat
m + Zero = m
m + Succ n = Succ(m + n)

6Chapter 15: Functional Programming

Natural Numbers

Multiplication ca be defined by
(x) :: Nat à Nat à Nat
m x Zero = Zero
m x Succ n = (m x n) + m

Nat can be a member of the type class Eq
instance Eq Nat where
Zero == Zero = True
Zero == Succ n = False
Succ m == Zero = False
Succ m == Succ n = (m == n)



2

7

Natural Numbers
Nat can be a member of the type class Ord

instance Ord Nat where
Zero < Zero = False
Zero < Succ n = True
Succ m < Zero = False
Succ m < Succ n = (m < n)

Elements of Nat can be printed by 
showNat :: Nat à String
showNatZero = “Zero”
showNat (Succ Zero) = “Succ Zero”
showNat (Succ(Succ n)) = “Succ (“ ++ 

showNat (Succ n) ++ “)” 8Chapter 15: Functional Programming

Haskell Numbers

Haskell provide, as primitives,  the following 
types:
n Int single-precision integers

n Integer arbitrary-precision integers
n Float singe-precision floating-point 

numbers

n Double double-precision gloating-point 
numbers

n Rational rational number

9Chapter 15: Functional Programming

The Numeric Type Classes

The same symbols, +, x, and so on, are 
used for arithmetic on each numeric type.
n Overloaded functions.

All Haskell number types are instances of 
the type class Num defined by 

class (Eq α, Show α) ⇒ Num α where
(+), (-), (x) :: α à α à α
negate :: α à α
fromInteger :: Integer à α
…
x – y = x + negate y

10Chapter 15: Functional Programming

Integral Types

The members of the Integral type are two 
primitive types Int and Integer.
The operators div and mod are provided 
as primitive.
n If x and y are integers, and y is not zero, then 
x div y = x / y.

13.8 = 13,  -13.8 = -14

n The value x mod y is defined by the equation
x = (x div y) * y + (x mod y)

11Chapter 15: Functional Programming

Lists

Lists can be used to fetch and carry data 
from one function to another.
Lists can be taken apart, rearranged, and 
combined with other lists.
Lists can be summed and multiplied.
Lists of characters can be read and 
printed.
…

12Chapter 15: Functional Programming

List Notation

A finite list is denoted using square brackets and 
commas.
n [1,2,3]
n [“hello”,”goodbye”]

All the elements of a list must have the same 
type.
The empty list is written as [].

A singleton list contains only one element
n [x]

n [[]] the empty list is its only member



3

13Chapter 15: Functional Programming

List Notation

If the elements of a list all have type α, 
then the list itself will be assigned the type 
[α].
n [1,2,3] :: [Int]
n [‘h’,’e’,’l’,’l’,’o’] :: [Char]
n [[1,2],[3]] :: [[Int]]
n [(+),(x)] :: [Int à Int à Int]

A list may contain the same value more 
than once.
Two lists are equal if and only if they 
contain the same value in the same order.

14Chapter 15: Functional Programming

Lists as a data type

A list can be constructed fro scratch by 
starting with an empty list and 
successively adding elements one by one.
n Elements can be added to the front of the list, 

or the rear, or to somewhere in the middle.

Data type declaration (list):
data List α = Nil | Cons α (List α)

n The constructor Cons (short for ‘construct’) 
add an element to the front of the list.

[1,2,3] Cons 1 (Cons 2 (Cons 3 Nil))

15Chapter 15: Functional Programming

Lists as a data type

In functional programming, lists are 
defined as elements of List α. 
n The syntax [α] is used instead of List α.

n The constructor Nil is written as []
n The constructor Cons is written as an infix 

operator (:)
(:) associates to the right
[1,2,3] = 1:(2:(3:[])) = 1:2:3:[]

16Chapter 15: Functional Programming

Lists as a data type

Like functions over data types, functions 
over lists can be defined by pattern 
matching.

instance (Eq α) ⇒ Eq [α] where
[] == [] = True
[] == (y:ys) = False
(x:xs) == [] = False
(x:xs) == (y:ys)= (x == y) ∧ (xs == ys)

17Chapter 15: Functional Programming

List Operations

Some of the most commonly used 
functions and operations on lists.

For each function: give the definition, 
illustrate its use, and state some of its 
properties.

18Chapter 15: Functional Programming

Concatenation

Two lists, both of the same type, can be 
concatenated to form one longer list.
This function is denoted by the binary 
operator ++.
? [1,2,3] ++ [4,5]
[1,2,3,4,5]
? [1,2] ++ [] ++ [1]
[1,2,1]



4

19Chapter 15: Functional Programming

Concatenation

The formal definition of ++ is
(++) :: [α] à [α] à [α]
[] ++ ys = ys
(x:xs) ++ ys = x:(xs++ys)

n The definition of ++ is by pattern matching 
on the left-hand argument.

n The two patterns are disjoint and cover all 
cases, apart from the undefined list ⊥.

n It follows by case exhaustion that 

⊥ ++ ys = ⊥
20Chapter 15: Functional Programming

Concatenation

n It is not the case that xs ++ ⊥ = ⊥

? [1,2,3] ++ undefined
[1,2,3{Interrupted!}

n The list [1,2,3] ++ ⊥ is a partial list; in full 
form it is the list 1:2:3:⊥.

The evaluator can compute the first three 
elements, but thereafter it goes into a 
nonterminating computation, so we interrupt it.

Some properties:
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
xs ++ [] = [] ++ xs = xs

21Chapter 15: Functional Programming

Reverse

This function reverses the order of 
elements in a finite list.

? reverse [1,2,3,4,5]
[5,4,3,2,1]

The definition is
reverse :: [α] à [α]
reverse [] =[]
reverse (x:xs)   = reverse xs ++ [x]

In words, to reverse a list (x:xs) one reverses xs
and then adds x to the end.

22Chapter 15: Functional Programming

Length

The length of a list is the number of 
elements it contains.
The definition is
length :: [α] à Int
length [] = 0
length (x:xs) = 1 + length(xs)

The nature of the list elements is 
irrelevant when computing the length:
? length [undefined,undefined]
2

23Chapter 15: Functional Programming

Length
Not every list has a well-defined length.
n The partial lists have an undefined length

⊥, x:⊥, x:y:⊥
n Only finite lists have well-defined lengths.

The list [⊥,⊥] is a finite list, not a partial list 
because it is the list ⊥:⊥:[], which ends in []
not ⊥. The computer cannot produce the 
elements, but it can produce the length of the list.

The function length satisfies a distribution 
property:
length(xs ++ ys) = length xs + length ys

24Chapter 15: Functional Programming

Head and Tail

The function head selects the first 
element of a nonempty list, and tail
selects the rest:
head :: [α] à α
head [] = error “empty list”
head (x:xs) = x
tail :: [α] à [α]
tail [] = error “empty list”
tail (x:xs) = xs

n These are constant-time operations, since 
they deliver their result in one reduction step.



5

25Chapter 15: Functional Programming

Init and last

The function last and init select the last 
element of a nonempty list and what 
remains after the last element has been 
removed.
? last [1,2,3,4,5]
5
? init [1,2,3,4,5]
[1,2,3,4]

26Chapter 15: Functional Programming

Init and last

First attempt (definition):
last :: [α] à α
last = head ⋅ reverse

init :: [α] à α
init = reverse ⋅ tail ⋅ reverse

Problem?
n init xs = ⊥ for all partial and infinite lists xs

27Chapter 15: Functional Programming

Init and last

Second attempt (definition):
last (x:xs) = if null xs then x else last xs

init (x:xs) = if null xs then [] else x:init xs

With this definition
n init xs = xs for all partial and infinite lists 
xs

28Chapter 15: Functional Programming

Init and last

Third attempt (definition):
n Since [x] is an abbreviation for x:[]
last [x] = x
last (x:xs) = last xs
init [x] = []
init (x:xs) = x:init xs

Problem?
n There is a serious danger of confusion because 

the patterns [x] and (x:xs) are not disjoint.
The second includes the first as a special case.

29Chapter 15: Functional Programming

Init and last

n If the order of the equations are reversed:

last’ (x:xs) = last’ xs
last’ [x] = x

n The definition of last’ would simply be 
incorrect.

last’ xs = ⊥

n It is not a good practice to write definition that 
depend critically on the order of the 
equations.

30Chapter 15: Functional Programming

Init and last

Definition
last :: [α] à α
last [] = error “empty list”
last [x] = x
last (x:y:ys) = last(y:ys)

init :: [α] à [α]
init [] = error “empty list”
init [x] = []
init [x:y:xs) = x:init(y:xs)


