Chapter 15

Functional Programming

Topics

% Reduction and Currying
% Recursive definitions
% Local definitions
& Type Systems
= Strict typing
= Polymorphism
& Types Classes
& Types
Booleans
Characters
Enumerations
Tuples
Strings

Chapter 15: Functional Programming

Currying

@Viewing a function with two or more
arguments as a function that takes one
argument at a time.

. ' . ‘ - The function f

. ‘ _ ' ‘ The curried function f

Chapter 15: Functional Programming 3

The function f x

Currying: example
@ The uncurried function t i mes takes two

numbers as inputs and return their
multiplication.

Om)
o-H-=

Chapter 15: Functional Programming

Currying: example

@The curried function t i mes takes a number
x and return the function (ti mes x).

@(tines x)takes a number y and returns
the number (x *).

@=mm=
Comm= @

Chapter 15: Functional Programming 5

Reduction

@Reduction is the process of converting a
functional expression to its canonical form
by repeatedly applying reduction rules

-m-9

Chapter 15: Functional Programming

Reduction Rules

@There are two kinds of reduction rules:
= Build-in definitions
#For example the arithmetic operations
= User supplied definitions

Chapter 15: Functional Programming 7

Recursive Definitions

@ Definitions can also be recursive.

@Example:
fact :: Integer > Integer
fact n = if n==0 then 1 else n*fact(n-1)

= This definition of f act is not completely satisfactory: if it
is applied to a negative integer, then the computation
never terminates.

= For negative numbers, fact x = ~.

@It is better if the computation terminated with a suitable error
message rather than proceeding indefinitely with a futile
computation.

Chapter 15: Functional Programming 8

Recursive Definitions

fact :: Integer > Integer

fact n
| n<0 = error “negative argunment”
| n==0=1
| n>0 =n* fact(n-1)

= The predefined function error takes a string as
argument; when evaluated it causes immediate
termination of the evaluator and displays the given

error message.
? fact (-1)
Program error: negative argunent

Chapter 15: Functional Programming 9

Local Definitions

2In mathematical descriptions there are
expressions qualified by a phrase of the
form “where ...".
» f(x,y) = (a+l)(a+2), wherea = (x+y)/?2

oExample:

f :: (Float,Float) > Float
f(x,y) = (a*l) * (a+2) where a = (x+y)/2

= The special word wher e is used to introduce a
local definition whose context (or scope) is the
expression on the RHS of the definition of f .

Chapter 15: Functional Programming 10

Local Definitions

@When there are two or more local

definitions, there are two styles:

f :: (Float, Float) - Float
f(x,y) = (a+l) * (b+2)

where a = (x+y)/2

b = (x+y)/3

f :: (Float,Float) > Float
f(x,y) = (a+l) * (b+2)
where a = (x+y)/2; b = (x+y)/3

Chapter 15: Functional Programming 11

Local Definitions

@A local definition can be used in
conjunction with a definition that relies on
guarded equations.:

f :: Integer > Integer > I|nteger
f xy=
| x £10 = x + a
| x > 10 = x-a
where a = square(y+a)

= The wher e clause qualifies both guarded
equations.

Chapter 15: Functional Programming 12

Type Systems

@Programming languages have either:
= No type systems
#Lisp, Prolog, Basic, etc
= A strict type system
@Pascal, Modula2
= A polymorphic type systems
ML, Mirada, Haskell, Java, C++

Chapter 15: Functional Programming 13

Strong Typing Principle

@Every expression must have a type
= 3 has type | nt
= * A’ has type Char

@ The type of a compound expression can
be deduced from its constituents alone.
« (A", 1+2) hastype (Char, Int)

2An expression which does not have a
sensible type is illegal.
« ‘A +3isillegal

Chapter 15: Functional Programming 14

Strict Typing

& Every expression has a unique concrete type.

= Although this system is good for trapping errors, it is too
restrictive.

@ -iN-9

& What type should be given toi d?
= IS it I nt >Int?, Char >Char?, (I nt, Bool) >(I nt, Bool)
2 With strict typing we have to define separate
versions of i d for each type.

Chapter 15: Functional Programming 15

Polymorphism

@Polymorphism allows the definition of
certain functions to be used with different
types.

2@Without polymorphism we would have to
write different versions of the function for
each possible type (type declaration is
different but the body is the same).

< Polymorphism results in simpler, more
general, reusable and concise programs.

Chapter 15: Functional Programming 16

Type Classes

@A curried multiplication can be used with
two different type signatures:

(x) :: Integer > Integer - Integer
(x) :: Float > Float > Float

@S0, it can be assigned a polymorphic type:
(x) :: a>a=>a

= This type is too general (two characters or two
booleans should not be multiplied).

Chapter 15: Functional Programming 17

Type Classes

2Group together kindred types into type
classes.
= | nt eger and Fl oat belong to the same
class, the class of numbers.
(x) :: Numab a=>a=>a
@There are other kindred types apart from
numbers.
= The types whose value can be displayed, the
types whose value can be compared for
equality, the type whose value can be
enumerated, etc.

Chapter 15: Functional Programming 18

Types

@In addition to defining functions and
constants, functional languages allows to
define types to build new and useful types
from existing ones.

@The universe of values is divided into
organized collections, called types.

= Integer, Float, Double, booleans, characters, lists,
trees, etc.

= An infinity variety of other types can be put
together: Integer > Float, (Float, Float), etc.

Chapter 15: Functional Programming

Types

@ Each type has associated with it certain
operations which are not meaningful for

other types.

addition + conjunction and
- Bool I
multiplication * disjunction or

20

Chapter 15: Functional Programming

Type Declaration

@The type of an expression is declared
using the following convention:
expression :: type

« Example:e :: t
#Reads: “the expression e has the type t "

Types

@ Strong typing: the value of an expression
depends only on the values of its
component expressions, so does its type.

@ Consequence of strong typing

Any expression which cannot be assigned a
sensible type is not well formed and is
rejected by the computer before evaluation
(illegal expressions).

Chapter 15: Functional Programming 22

@pi :: Double
@#Square :: Integer - Integer
Chapter 15: Functional Programming 21
Types
quad :: Integer - Integer

quad x = square square Xx

@ Advantage of strong typing
Enables a range of errors to be detected
before evaluation.

@ There are two stages of analysis when
a expression is submitted for
evaluation.

Chapter 15: Functional Programming

Types

The expression is checked to see whether
it conforms to the correct syntax laid down
for constructing expressions.

B No: the computer signals a syntax error

B Yes: perform the second stage of evaluation

= The expression is analysed to see if it
posses a sensible type
B Fails: the computer signals a type error.
B Yes: the expression is evaluated.

Chapter 15: Functional Programming 24

Classification of Types

@Basic/Simple Types

= Contain primitive values
@User-defined Types

= Contain user-defined values
@Derived Types

= Contain more complex values

Chapter 15: Functional Programming 25

Simple Data Types: booleans

@ Used to define the truth value of a
conditional expression.
= There are two truth values, True and Fal se.
= These two values comprise the datatype Bool
of boolean values.
« True, Fal se and Bool begin with a capital
letter.

= The datatype Bool can be introduce with a
datatype declaration:
data Bool = False | True

Chapter 15: Functional Programming 26

Simple Data Types: booleans

@ Having introduce Bool , it is possible to
define functions that take boolean
arguments by pattern matching.

= Example: the negation function
not :: Bool - Bool
not Fal se = True
not True = Fal se
® To simplify expressions of the form not e: first e is
reduced to normal form.

» Ife cannot be reduced to normal form then the value of
not e is undefined

not A = ~ thennot is strict.
Chapter 15: Functional Programming 27

Simple Data Types: booleans

% There are not two but thee boolean
values: True, Fal se, and ~.

< Every datatype declaration introduces
an extra anonymous value, the
undefined value of the datatype.

2 More examples: conjunction,
disjunction.

Chapter 15: Functional Programming 28

Simple Data Types: booleans

@ This is how pattern matching works:
A UTrue = 7
~ UFalse = »
False U~ = Fal se
True UM = 7

= Uis strict in its LHS, but nonstrict in its
RHS argument.

Chapter 15: Functional Programming 29

Booleans: equality operators

@There are two equality operators = = and
1

(==) :: Bool - Bool -> Bool
x ==y = (x) U(not x Unot vy)
(1) :: Bool = Bool - Bool
X 1y = not(x ==y)
@The symbol == is used to denote a
computable test for equality.
@The symbol = is used both in definitions
and its normal mathematical sense.

Chapter 15: Functional Programming 30

Booleans: equality operators

@The main purpose of introducing an
equality test is to be able to use it with a
range of different types.
= (==) and (*) are overloaded operations.

@The proper way to introduce them is first
to declare a type class Eq consisting of all
those types for which (==) and (*) are to
be defined.

Chapter 15: Functional Programming 31

Booleans: equality operators

class Eq a where
(9,(Y) :: a > a > Bool
= To declare that a certain type is an instance
of the type class Eq, an instance declaration is
needed.
instance Eq Bool where
(x == y) = (x Uy) U(not x Unot y)
(x *y) =not(x ==y)

Chapter 15: Functional Programming 32

Booleans: comparison
operators

@Booleans can also be compared.

= Comparison operations are also overloaded
and make sense with elements from a
number of different types.
class (Eq a) P Od a where
(<), (5, (3).,(> :: a > a > Bool
(x £y) = (x <y) U(x ==y)
(x3y) =(x>y) U(x ==y)
(x >y) =not(x £y)

Chapter 15: Functional Programming 33

Booleans: comparison
operators

@ Bool could be an instance of Or d:

instance Ord Bool where
Fal se £ False = Fal se
Fal se £ True True
True £ False Fal se
True £ True = Fal se

Chapter 15: Functional Programming 34

Example: leap years

@Define a function to determine whether a
year is a leap year or not.

= A leap year is divisible by 4, except that if it is
divisible by 100, then it must also be divisible by
400.
| eapyear :: Int - Bool
| eapyear y = (y node 4 == 0) U
(y mode 100 * 0 U (y npde 400 == 0)
= Using conditional expressions:
| eapyear y = if (y node 100==0)
then (y node 400 ==0)
else (y node 4 == 0)

Chapter 15: Functional Programming 35

Characters

@Characters are denoted by enclosing them
in single quotation marks.
= Remember: the character ‘ 7' is different from
the decimal number 7.
@Two primitive functions are provided for
processing characters, ord and chr.

= Their types are:
ord :: Char = Int
chr :: Int > Char

Chapter 15: Functional Programming 36

Characters

= The function or d converts a character c to an
integerord c intherange 0 £ ord ¢ £ 256

= The function chr does the reverse, converting
an integer back into the character it
represents.

= Thuschr (ord c) = cforall characters c.

? ord' b’ ? chro8
98 ‘b’

? chr(ord’' b’ +1)
e

)

Chapter 15: Functional Programming 37

Characters

@Characters can be compared and

tested for equality.
instance Eq Char where
(x ==y) = (ord x == ord y)

instance Ord Char where
(x <y) = (ord x <ordy)

20 <9 oA <7
True True

Chapter 15: Functional Programming 38

Characters: simple functions

@ Three functions for determining whether a
character is a digit, lower-case letter, or upper-case
letter:

isDigit,isLower,isUpper :: Char - Bool

isDigit ¢ = (‘0 £c¢c) U(c £'9)
isLower ¢ = (‘a £c) U(c £'2")
isUpper ¢ = (‘A £¢c) U(c £:2)

@ A function for converting lower-case letter to upper-
case:
capitalise :: Char - Char
capitalise c = if isLower c then
chr(offset+ord c) else c
where offset = ord "A" — ord ‘a’

Chapter 15: Functional Programming 39

Enumerations

@They are user-defined types.

oExample:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
= This definition binds the name Day to a new type
that consists of eight distinct values, seven of
which are represented by the given constants
and the eight by the undefined value »
#The seven new constants are called the constructors
of the datatype Day.

2By convention, constructor names and the new name
begin with an upper-case letter.

Chapter 15: Functional Programming 40

Enumerations

@It is possible to compare elements of type
Day, so Day can be declared as an
instance of the type classes Eq and Or d.
= A definition of (==) and (<) based on pattern

matching would involve a large number of
equations.

@Better idea. Code elements of Day as
integers, and use integer comparison
instead.

Chapter 15: Functional Programming a1

Enumerations

@ Since the same idea can be employed with other
enumerated types, a new type class Enumis
declared

= Enumdescribes types whose elements can be

enumerated.
class Enuma where
fromEnum :: a > Int
toEnum :: Int > a

= Atype is declared an instance of Enumby giving
definition of t oEnumand f r onEnum functions that
convert between elements of the type and | nt .

Chapter 15: Functional Programming 42

Enumerations: example

@Day is a member of Enum

i nstance Enum Day where
fronEnum Sun = 0
fronEnum Mon =
fronEnum Tue =
fronEnum Wd =
fromEnum Thu =
fronEnum Fri
fronEnum Sat

o0 A WN PP

Chapter 15: Functional Programming 43

Enumerations: example

@Given fromEnum on Day:

instance Eq Day where
(x == y) = (fronEnum x == fronEnumy)

instance Ord Day where
(x <y) = (fronEnum x < fronEnumy)

Chapter 15: Functional Programming 44

Enumerations: example

wor kday :: Day - Bool
workday d = (Mon £d) U (d £ Fri)

rest day :: Day - Bool
restday d = (d==Sat) U (d==Sun)

dayafter :: Day -> Day
dayafter d = toEnun{(fronEnum d+1) nod 7)

Chapter 15: Functional Programming 45

Automatic instance declarations

<Haskell provides a mechanism for
declaring a type as an instance of Eq,
Or d, and Enumin one declaration.

data Day = Sun | Mon | Tue | Wed |
Thu | Fri | Sat
deriving (Eq, Ord, Enum
= The deriving clause causes the evaluator to
generate instance declarations of the named
type classes automatically.

Chapter 15: Functional Programming 46

Tuples

@0ne way of combining types to form new
ones is by pairing them.

= Example: (1 nt eger, Char) consists of all
pairs of values (x, c) for which x is an
arbitrary-precision integer, and ¢ isa
character.

alLike other types, the type (a,b) contains
an additional value *

Chapter 15: Functional Programming 47

Tuples: practical example

@A function returns a pair of numbers, the
two real roots of a quadratic equation with
coefficients (a,b,c):

roots :: (Float, Float, Float) - (Float, Float)
roots (a,b,c)
| a==0 = error “not quadratic”
| e<0 = error “conplex roots”
| otherwise = ((-b-r)/d,(-b+r)/d)
where r sqrt e
d 2*a
e = b*b-4*a*c

Chapter 15: Functional Programming 48

Other Types

@ A type can be declared by typing its constants or
with values that depend on those of other types.
data Either = Left Bool | Right Char

= This declares a type Ei t her whose values are
denoted by expressions of the form Left b, where b
is a boolean, and Ri ght c, where c is a character.

= There are 3 boolean values (including~) and 257
characters (including "), so there are 261 distinct
values of the type Ei t her ; theseinclude Left *,
Ri ght ~,and”

Chapter 15: Functional Programming 49

Other Types

2In general:
data Either a b = Left a | Right b
2The names Left and Ri ght introduces

two constructors for building values of type
Ei t her, these constructors are nonstrict

functions with types:
Left :: a > Either ab
Right :: b > Either a b

Chapter 15: Functional Programming 50

Other Types

@ Assuming that values of types a and b can be
compared, comparison on that type Either a b
can be added as an instance declaration:

instance (Eq a,Eq b) P Eq(Either a b) where

Left x == Left y = (x==y)
Left x == Right y = Fal se
Right x == Left y = Fal se

Right x == Right y = (x==y)
instance (Od a,Od b) P Ord(Either a b) where

Left x < Left y = (x<y)
Left x < Right y = True
Right x < Left y = Fal se
Ri ght x < Right y = (x<y)
Chapter 15: Functional Programming 51

Type Synonyms

@Type synonym declaration: a simple
notation for giving alternative names to
types.

@Example:
roots :: (Float, Float, Float) -> (Float, Float)
= As an alternative, two type synonyms could
be used

type Coeffs = (Float, Float, Float)
type Roots = (Float,Float)

Chapter 15: Functional Programming 52

Type Synonyms

= This declarations do not introduce new types
but merely alternative names for existing
types.
roots :: Coeffs - Roots

= This new description is shorter and more

informative.

@Type synonyms can be general.
type Pairs a = (a,a)
type Autonorph a = a > a
type Flag a = (a, Bool)

Chapter 15: Functional Programming 53

Type Synonyms

2Type synonyms cannot be declared in
terms of each other since every synonym
must be expressible in terms of existing
types.
#Synonyms can be declared in terms of
another synonym.
type Bools = Pai rBool
2@Synonyms and declarations can be mixed
data OneTwo a = One a | Two(Pairs a)

Chapter 15: Functional Programming 54

Strings

@A list of characters is called a string.
@The type Stri ng is a synonym type:
type String = [Char]
@Syntax: the characters of a string are
enclosed in double quotation marks.
2'a vs."a’
= the former is a character

= the latter is a list of characters that happens to
contain only one element.

Chapter 15: Functional Programming 55

Strings

@ Strings cannot be declared separately as
instances of Eq and Or d because they are just
synonyms.
= They inherit whatever instances are declared for

general lists.

@ Comparison on strings follow the normal
lexicographic ordering.

? “hello” < “hallo”
Fal se

? “Jo" < “Joanna”
True

Chapter 15: Functional Programming 56

Strings

@ Haskell provides a primitive command for
printing strings.
putStr :: String 2> 1Q)
= Evaluating the command put St r causes the string to

be printed literally.
? putStr “Hello World”

Hel l o World

? putStr “This sentence contains \n a newine”
This sentence contains

a new ine

Chapter 15: Functional Programming 57

The type class Show

@Haskell provides a special type class Show
to display information of different kinds
and formats.

class Show a where
showsPrec :: Int > a = String 2 String

= The function showsPr ec is provided for
displaying values of type a
= Using showsPr ec it is possible to define a

simpler function that takes a value and
converts it to a string.
show :: Showa b a - String

Chapter 15: Functional Programming 58

The type class Show

@ Example: if Bool is declares to be a member of
Showand show is defined for booleans as

show Fal se = "Fal se"
show True = "True"
? put Str(show True)
True
@ Some instances of Show are provided as
primitive.

? putStr("The year is "++ show(3*667))
The year is 2001

Chapter 15: Functional Programming 59

10

