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Topics
Reduction and Currying
Recursive definitions
Local definitions
Type Systems
n Strict typing
n Polymorphism

Types Classes
Types
n Booleans
n Characters
n Enumerations
n Tuples
n Strings
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Currying

Viewing a function with two or more 
arguments as a function that takes one 
argument at a time.

f

x

y

result The function f

The curried function fx f f x

y resultf x The function f x
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Currying: example

The uncurried function times takes two 
numbers as inputs and return their 
multiplication.

times

x

y

x * y
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Currying: example

The curried function times takes a number 
x and return the function (times x).
(times x) takes a number y and returns 
the number (x * y).

y

x * ytimes x

x times
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Reduction

Reduction is the process of converting a 
functional expression to its canonical form 
by repeatedly applying reduction rules

Expression
Canonical 

FormReduction
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Reduction Rules

There are two kinds of reduction rules:
n Build- in definitions

For example the arithmetic operations
n User supplied definitions
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Recursive Definitions

Definitions can also be recursive.
Example:

fact :: Integer à Integer
fact n = if n==0 then 1 else n*fact(n-1)

n This definition of fact is not completely satisfactory: if it 
is applied to a negative integer, then the computation 
never terminates.

n For negative numbers, fact x = ⊥. 
It is better if the computation terminated with a suitable error
message rather than proceeding indefinitely with a futile 
computation.
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Recursive Definitions
fact :: Integer à Integer
fact n 

| n < 0  =  error “negative argument”
| n == 0 = 1
| n > 0  = n * fact(n-1)

n The predefined function error takes a string as 
argument; when evaluated it causes immediate 
termination of the evaluator and displays the given 
error message.
? fact (-1)
Program error: negative argument
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Local Definitions

In mathematical descriptions there are 
expressions qualified by a phrase of the 
form “where …”.
n f(x,y) = (a+1)(a+2),where a = (x+y)/2

Example:
f :: (Float,Float) à Float
f(x,y) = (a+1) * (a+2) where a = (x+y)/2

n The special word where is used to introduce a 
local definition whose context (or scope) is the 
expression on the RHS of the definition of f.
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Local Definitions

When there are two or more local 
definitions, there are two styles:

f :: (Float,Float) à Float
f(x,y) = (a+1) * (b+2)

where a = (x+y)/2
b = (x+y)/3

f :: (Float,Float) à Float
f(x,y) = (a+1) * (b+2)

where a = (x+y)/2; b = (x+y)/3
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Local Definitions

A local definition can be used in 
conjunction with a definition that relies on 
guarded equations.:

f :: Integer à Integer à Integer
f x y = 

| x ≤ 10 = x + a
| x > 10 = x-a

where a = square(y+a)

n The where clause qualifies both guarded 
equations.
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Type Systems

Programming languages have either:
n No type systems

Lisp, Prolog, Basic, etc

n A strict type system
Pascal, Modula2

n A polymorphic type systems
ML, Mirada, Haskell, Java, C++
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Strong Typing Principle

Every expression must have a type
n 3 has type Int
n ‘A’ has type Char

The type of a compound expression can 
be deduced from its constituents alone.
n (‘A’,1+2) has type (Char, Int)

An expression which does not have a 
sensible type is illegal.
n ‘A’+3 is illegal
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Strict Typing

Every expression has a unique concrete type.
n Although this system is good for trapping errors, it is too 

restrictive.

What type should be given to id?
n Is it IntàInt?, CharàChar?, (Int,Bool)à(Int,Bool)

With strict typing we have to define separate 
versions of id for each type.

id xx
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Polymorphism

Polymorphism allows the definition of 
certain functions to be used  with different 
types.
Without polymorphism we would have to 
write different versions of the function for 
each possible type (type declaration is 
different but the body is the same).
Polymorphism results in simpler, more 
general, reusable and concise programs.
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Type Classes

A curried multiplication can be used with 
two different type signatures:

(x) :: Integer à Integer à Integer
(x) :: Float à Float à Float

So, it can be assigned a polymorphic type:
(x) :: α à α à α

n This type is too general (two characters or two 
booleans should not be multiplied).
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Type Classes

Group together kindred types into type 
classes .
n Integer and Float belong to the same 

class, the class of numbers. 
(x) :: Num α ⇒ α à α à α

There are other kindred types apart from 
numbers.
n The types whose value can be displayed, the 

types whose value can be compared for 
equality, the type whose value can be 
enumerated, etc.
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Types

In addition to defining functions and 
constants, functional languages allows to 
define types to build new and useful types 
from existing ones.
The universe of values is divided into 
organized collections, called types.
n Integer, Float, Double, booleans, characters, lists, 

trees, etc.
n An infinity variety of other types can be put 

together: Integer à Float, (Float, Float), etc.
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Types

Each type has associated with it certain 
operations which are not meaningful for 
other types.

123

-123333

314159
Int

False

True

Bool

Int
addition          +

multiplication  *
Bool

conjunction      and

disjunction         or
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Type Declaration

The type of an expression is declared 
using the following convention:

expression :: type
n Example: e :: t

Reads: “the expression e has the type t”

pi :: Double
Square :: Integer à Integer
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Types

Strong typing: the value of an expression 
depends only on the values of its 
component expressions, so does its type.
Consequence of strong typing
n Any expression which cannot be assigned a 

sensible type is not well formed and is 
rejected by the computer before evaluation 
(illegal expressions).
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Types
quad :: Integer à Integer
quad x = square square x

Advantage of strong typing
n Enables a range of errors to be detected 

before evaluation.

There are two stages of analysis when 
a expression is submitted for 
evaluation.
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Types

n The expression is checked to see whether 
it conforms to the correct syntax laid down 
for constructing expressions.
n No: the computer signals a syntax error
n Yes: perform the second stage of evaluation

n The expression is analysed to see if it 
posses a sensible type
n Fails: the computer signals a type error.
n Yes: the expression is evaluated.
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Classification of Types

Basic/Simple Types
n Contain primitive values

User-defined Types
n Contain user-defined values

Derived Types
n Contain more complex values
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Simple Data Types: booleans

Used to define the truth value of a 
conditional expression.
n There are two truth values, True and False.
n These two values comprise the datatype Bool

of boolean values.

n True, False and Bool begin with a capital 
letter. 

n The datatype Bool can be introduce with a 
datatype declaration:

data Bool = False | True
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Simple Data Types: booleans

Having introduce Bool, it is possible to 
define functions that take boolean
arguments by pattern matching.
n Example: the negation function

not :: Bool à Bool
not False = True
not True = False

l To simplify expressions of the form not e: first e is 
reduced to normal form.
n If e cannot be reduced to normal form then the value of 

not e is undefined
n not ⊥ = ⊥ then not is strict.
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Simple Data Types: booleans

There are not two but thee boolean
values: True, False, and ⊥.

Every datatype declaration introduces 
an extra anonymous value, the 
undefined value of the datatype.
More examples: conjunction, 
disjunction.
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Simple Data Types: booleans

This is how pattern matching works:
⊥ ∧ True = ⊥
⊥ ∧ False = ⊥
False ∧ ⊥ = False
True ∧ ⊥ = ⊥

n ∧ is strict in its LHS, but nonstrict in its 
RHS argument.
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Booleans: equality operators

There are two equality operators = = and 
≠

(==) :: Bool à Bool à Bool
x == y = (x∧y) ∨ (not x ∧ not y)
(≠) :: Bool à Bool à Bool
x ≠ y = not(x == y)

The symbol == is used to denote a 
computable test for equality.
The symbol = is used both in definitions 
and its normal mathematical sense.
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Booleans: equality operators

The main purpose of introducing an 
equality test is to be able to use it with a 
range of different types.
n (==) and (≠) are overloaded operations .

The proper way to introduce them is first 
to declare a type class Eq consisting of all 
those types for which (==) and (≠) are to 
be defined.

32Chapter 15: Functional Programming

Booleans: equality operators

class Eq α where 
(=),(≠) :: α à α à Bool

n To declare that a certain type is an instance 
of the type class Eq, an instance declaration is 
needed.
instance Eq Bool where
(x == y) = (x ∧ y) ∨ (not x ∧ not y)
(x ≠ y) = not(x == y)
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Booleans: comparison 
operators

Booleans can also be compared. 
n Comparison operations are also overloaded 

and make sense with elements from a 
number of different types.

class (Eq α) ⇒ Ord α where
(<),(≤),(≥),(>) :: α à α à Bool
(x ≤ y) = (x < y) ∨ (x == y)
(x ≥ y) = (x > y) ∨ (x == y)
(x > y) = not(x ≤ y)
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Booleans: comparison 
operators

Bool could be an instance of Ord:
instance Ord Bool where

False ≤ False = False
False ≤ True = True
True ≤ False = False
True ≤ True = False
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Example: leap years

Define a function to determine whether a 
year is a leap year or not.
n A leap year is divisible by 4, except that if it is 

divisible by 100, then it must also be divisible by 
400.
leapyear :: Int à Bool
leapyear y = (y mode 4 == 0) ∧

(y mode 100 ≠ 0 ∨ (y mode 400 == 0)  

n Using conditional expressions:
leapyear y = if (y mode 100==0) 

then (y mode 400 ==0) 
else (y mode 4 == 0)
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Characters

Characters are denoted by enclosing them 
in single quotation marks.
n Remember: the character ‘7’ is different from 

the decimal number 7.

Two primitive functions are provided for 
processing characters, ord and chr. 
n Their types are:

ord :: Char à Int
chr :: Int à Char
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Characters

n The function ord converts a character c to an 
integer ord c in the range 0 ≤ ord c ≤ 256

n The function chr does the reverse, converting 
an integer back into the character it 
represents.

n Thus chr (ord c) = c for all characters c.

? ord‘b’ ? chr98
98 ‘b’

? chr(ord’b’+1)
‘c’
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Characters

Characters can be compared and 
tested for equality.

instance Eq Char where
(x == y) = (ord x == ord y)

instance Ord Char where
(x < y) = (ord x < ord y)

? ‘0’ < ‘9’ ? ‘A’ < ‘Z’
True True
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Characters: simple functions

Three functions for determining whether a 
character is a digit, lower-case letter, or upper-case 
letter:

isDigit,isLower,isUpper :: Char à Bool
isDigit c = (‘0’ ≤ c) ∧ (c ≤ ‘9’)
isLower c = (‘a’ ≤ c) ∧ (c ≤ ‘z’)
isUpper c = (‘A’ ≤ c) ∧ (c ≤ ‘Z’)

A function for converting lower-case letter to upper-
case:

capitalise :: Char à Char
capitalise c = if isLower c then 

chr(offset+ord c) else c
where offset = ord ‘A’ – ord ‘a’
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Enumerations

They are user-defined types.
Example:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

n This definition binds the name Day to a new type 
that consists of eight distinct values, seven of 
which are represented by the given constants 
and the eight by the undefined value ⊥

The seven new constants are called the constructors 
of the datatype Day.
By convention, constructor names and the new name 
begin with an upper-case letter.
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Enumerations

It is possible to compare elements of type 
Day, so Day can be declared as an 
instance of the type classes Eq and Ord.
n A definition of (==) and (<) based on pattern 

matching would involve a large number of 
equations.

Better idea. Code elements of Day as 
integers, and use integer comparison 
instead.
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Enumerations

Since the same idea can be employed with other 
enumerated types, a new type class Enum is 
declared
n Enum describes types whose elements can be 

enumerated.
class Enum α where

fromEnum :: α à Int
toEnum   :: Int à α

n A type is declared an instance of Enum by giving 
definition of toEnum and fromEnum, functions that 
convert between elements of the type and Int.
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Enumerations: example

Day is a member of Enum:

instance Enum Day where
fromEnum Sun = 0
fromEnum Mon = 1
fromEnum Tue = 2
fromEnum Wed = 3
fromEnum Thu = 4
fromEnum Fri = 5
fromEnum Sat = 6
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Enumerations: example

Given fromEnum on Day:
instance Eq Day where
(x == y) = (fromEnum x == fromEnum y)

instance Ord Day where 
(x < y) = (fromEnum x < fromEnum y)
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Enumerations: example

workday :: Day à Bool
workday d = (Mon ≤ d) ∧ (d ≤ Fri)

restday :: Day à Bool
restday d = (d==Sat) ∨ (d==Sun)

dayafter   :: Day à Day
dayafter d = toEnum((fromEnum d+1) mod 7)  
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Automatic instance declarations

Haskell provides a mechanism for 
declaring a type as an instance of Eq, 
Ord, and Enum in one declaration.

data Day = Sun | Mon | Tue | Wed | 
Thu | Fri | Sat
deriving (Eq,Ord,Enum)

n The deriving clause causes the evaluator to 
generate instance declarations of the named 
type classes automatically.
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Tuples
One way of combining types to form new 
ones is by pairing them.
n Example: (Integer, Char) consists of all 

pairs of values (x,c) for which x is an 
arbitrary-precision integer, and c is a 
character.

Like other types, the type (α,β) contains 
an additional value ⊥

48Chapter 15: Functional Programming

Tuples: practical example

A function returns a pair of numbers, the 
two real roots of a quadratic equation with 
coefficients (a,b,c):

roots :: (Float, Float, Float) à (Float,Float)
roots (a,b,c)

| a == 0 = error “not quadratic”
| e < 0 = error “complex roots”
| otherwise = ((-b-r)/d,(-b+r)/d)
where r = sqrt e

d = 2*a
e = b*b-4*a*c
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Other Types

A type can be declared by typing its constants or 
with values that depend on those of other types.

data Either = Left Bool | Right Char

n This declares a type Either whose values are 
denoted by expressions of the form Left b, where b
is a boolean, and Right c, where c is a character.

n There are 3 boolean values (including ⊥) and 257
characters (including ⊥), so there are 261 distinct 
values of the type Either; these include Left ⊥, 
Right ⊥, and ⊥
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Other Types

In general:
data Either α β = Left α | Right β

The names Left and Right introduces 
two constructors for building values of type 
Either, these constructors are nonstrict
functions with types:

Left  :: α à Either α β
Right :: β à Either α β
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Other Types

Assuming that values of types α and β can be 
compared, comparison on that type Either α β
can be added as an instance declaration:

instance (Eq α,Eq β ) ⇒ Eq(Either α β) where
Left x == Left y = (x==y)
Left x == Right y = False
Right x == Left y = False
Right x == Right y  = (x==y)

instance (Ord α,Ord β ) ⇒ Ord(Either α β) where
Left x < Left y = (x<y)
Left x < Right y = True
Right x < Left y = False
Right x < Right y = (x<y)

52Chapter 15: Functional Programming

Type Synonyms

Type synonym declaration: a simple 
notation for giving alternative names to 
types.
Example:

roots :: (Float, Float, Float) à (Float,Float)

n As an alternative, two type synonyms could 
be used
type Coeffs = (Float, Float, Float)
type Roots  = (Float,Float)
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Type Synonyms

n This declarations do not introduce new types 
but merely alternative names for existing 
types.
roots :: Coeffs à Roots

n This new description is shorter and more 
informative.

Type synonyms can be general.
type Pairs α = (α,α)
type Automorph α = α à α
type Flag α = (α,Bool)
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Type Synonyms

Type synonyms cannot be declared in 
terms of each other since every synonym 
must be expressible in terms of existing 
types.
Synonyms can be declared in terms of 
another synonym.

type Bools = PairBool

Synonyms and declarations can be mixed
data OneTwo α = One α | Two(Pairs α)
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Strings

A list of characters is called a string.
The type String is a synonym type:

type String = [Char]

Syntax: the characters of a string are 
enclosed in double quotation marks.
‘a’ vs. “a”
n the former is a character
n the latter is a list of characters that happens to 

contain only one element.
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Strings

Strings cannot be declared separately as 
instances of Eq and Ord because they are just 
synonyms.
n They inherit whatever instances are declared for 

general lists.
Comparison on strings follow the normal 
lexicographic ordering.

? “hello” < “hallo”
False
? “Jo” < “Joanna”
True
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Strings

Haskell provides a primitive command for 
printing strings.

putStr :: String à IO() 
n Evaluating the command putStr causes the string to 

be printed literally.
? putStr “Hello World”
Hello World
? putStr “This sentence contains \n a newline”
This sentence contains
a newline
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The type class Show

Haskell provides a special type class Show
to display information of different kinds 
and formats.

class Show α where
showsPrec :: Int à α à String à String

n The function showsPrec is provided for 
displaying values of type α

n Using showsPrec it is possible to define a 
simpler function that takes a value and 
converts it to a string.

show :: Show α ⇒ α à String
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The type class Show

Example: if Bool is declares to be a member of 
Show and show is defined for booleans as

show False = "False"
show True  = "True"
? putStr(show True)
True

Some instances of Show are provided as 
primitive.

? putStr("The year is "++ show(3*667))
The year is 2001


