
1

Chapter 15

Functional Programming

2Chapter 15: Functional Programming

Topics
Reduction and Currying
Recursive definitions
Local definitions
Type Systems
n Strict typing
n Polymorphism

Types Classes
Types
n Booleans
n Characters
n Enumerations
n Tuples
n Strings

3Chapter 15: Functional Programming

Currying

Viewing a function with two or more
arguments as a function that takes one
argument at a time.

f

x

y

result The function f

The curried function fx f f x

y resultf x The function f x

4Chapter 15: Functional Programming

Currying: example

The uncurried function times takes two
numbers as inputs and return their
multiplication.

times

x

y

x * y

5Chapter 15: Functional Programming

Currying: example

The curried function times takes a number
x and return the function (times x).
(times x) takes a number y and returns
the number (x * y).

y

x * ytimes x

x times

6Chapter 15: Functional Programming

Reduction

Reduction is the process of converting a
functional expression to its canonical form
by repeatedly applying reduction rules

Expression
Canonical

FormReduction

2

7Chapter 15: Functional Programming

Reduction Rules

There are two kinds of reduction rules:
n Build- in definitions

For example the arithmetic operations
n User supplied definitions

8Chapter 15: Functional Programming

Recursive Definitions

Definitions can also be recursive.
Example:

fact :: Integer à Integer
fact n = if n==0 then 1 else n*fact(n-1)

n This definition of fact is not completely satisfactory: if it
is applied to a negative integer, then the computation
never terminates.

n For negative numbers, fact x = ⊥.
It is better if the computation terminated with a suitable error
message rather than proceeding indefinitely with a futile
computation.

9Chapter 15: Functional Programming

Recursive Definitions
fact :: Integer à Integer
fact n

| n < 0 = error “negative argument”
| n == 0 = 1
| n > 0 = n * fact(n-1)

n The predefined function error takes a string as
argument; when evaluated it causes immediate
termination of the evaluator and displays the given
error message.
? fact (-1)
Program error: negative argument

10Chapter 15: Functional Programming

Local Definitions

In mathematical descriptions there are
expressions qualified by a phrase of the
form “where …”.
n f(x,y) = (a+1)(a+2),where a = (x+y)/2

Example:
f :: (Float,Float) à Float
f(x,y) = (a+1) * (a+2) where a = (x+y)/2

n The special word where is used to introduce a
local definition whose context (or scope) is the
expression on the RHS of the definition of f.

11Chapter 15: Functional Programming

Local Definitions

When there are two or more local
definitions, there are two styles:

f :: (Float,Float) à Float
f(x,y) = (a+1) * (b+2)

where a = (x+y)/2
b = (x+y)/3

f :: (Float,Float) à Float
f(x,y) = (a+1) * (b+2)

where a = (x+y)/2; b = (x+y)/3

12Chapter 15: Functional Programming

Local Definitions

A local definition can be used in
conjunction with a definition that relies on
guarded equations.:

f :: Integer à Integer à Integer
f x y =

| x ≤ 10 = x + a
| x > 10 = x-a

where a = square(y+a)

n The where clause qualifies both guarded
equations.

3

13Chapter 15: Functional Programming

Type Systems

Programming languages have either:
n No type systems

Lisp, Prolog, Basic, etc

n A strict type system
Pascal, Modula2

n A polymorphic type systems
ML, Mirada, Haskell, Java, C++

14Chapter 15: Functional Programming

Strong Typing Principle

Every expression must have a type
n 3 has type Int
n ‘A’ has type Char

The type of a compound expression can
be deduced from its constituents alone.
n (‘A’,1+2) has type (Char, Int)

An expression which does not have a
sensible type is illegal.
n ‘A’+3 is illegal

15Chapter 15: Functional Programming

Strict Typing

Every expression has a unique concrete type.
n Although this system is good for trapping errors, it is too

restrictive.

What type should be given to id?
n Is it IntàInt?, CharàChar?, (Int,Bool)à(Int,Bool)

With strict typing we have to define separate
versions of id for each type.

id xx

16Chapter 15: Functional Programming

Polymorphism

Polymorphism allows the definition of
certain functions to be used with different
types.
Without polymorphism we would have to
write different versions of the function for
each possible type (type declaration is
different but the body is the same).
Polymorphism results in simpler, more
general, reusable and concise programs.

17Chapter 15: Functional Programming

Type Classes

A curried multiplication can be used with
two different type signatures:

(x) :: Integer à Integer à Integer
(x) :: Float à Float à Float

So, it can be assigned a polymorphic type:
(x) :: α à α à α

n This type is too general (two characters or two
booleans should not be multiplied).

18Chapter 15: Functional Programming

Type Classes

Group together kindred types into type
classes .
n Integer and Float belong to the same

class, the class of numbers.
(x) :: Num α ⇒ α à α à α

There are other kindred types apart from
numbers.
n The types whose value can be displayed, the

types whose value can be compared for
equality, the type whose value can be
enumerated, etc.

4

19Chapter 15: Functional Programming

Types

In addition to defining functions and
constants, functional languages allows to
define types to build new and useful types
from existing ones.
The universe of values is divided into
organized collections, called types.
n Integer, Float, Double, booleans, characters, lists,

trees, etc.
n An infinity variety of other types can be put

together: Integer à Float, (Float, Float), etc.

20Chapter 15: Functional Programming

Types

Each type has associated with it certain
operations which are not meaningful for
other types.

123

-123333

314159
Int

False

True

Bool

Int
addition +

multiplication *
Bool

conjunction and

disjunction or

21Chapter 15: Functional Programming

Type Declaration

The type of an expression is declared
using the following convention:

expression :: type
n Example: e :: t

Reads: “the expression e has the type t”

pi :: Double
Square :: Integer à Integer

22Chapter 15: Functional Programming

Types

Strong typing: the value of an expression
depends only on the values of its
component expressions, so does its type.
Consequence of strong typing
n Any expression which cannot be assigned a

sensible type is not well formed and is
rejected by the computer before evaluation
(illegal expressions).

23Chapter 15: Functional Programming

Types
quad :: Integer à Integer
quad x = square square x

Advantage of strong typing
n Enables a range of errors to be detected

before evaluation.

There are two stages of analysis when
a expression is submitted for
evaluation.

24Chapter 15: Functional Programming

Types

n The expression is checked to see whether
it conforms to the correct syntax laid down
for constructing expressions.
n No: the computer signals a syntax error
n Yes: perform the second stage of evaluation

n The expression is analysed to see if it
posses a sensible type
n Fails: the computer signals a type error.
n Yes: the expression is evaluated.

5

25Chapter 15: Functional Programming

Classification of Types

Basic/Simple Types
n Contain primitive values

User-defined Types
n Contain user-defined values

Derived Types
n Contain more complex values

26Chapter 15: Functional Programming

Simple Data Types: booleans

Used to define the truth value of a
conditional expression.
n There are two truth values, True and False.
n These two values comprise the datatype Bool

of boolean values.

n True, False and Bool begin with a capital
letter.

n The datatype Bool can be introduce with a
datatype declaration:

data Bool = False | True

27Chapter 15: Functional Programming

Simple Data Types: booleans

Having introduce Bool, it is possible to
define functions that take boolean
arguments by pattern matching.
n Example: the negation function

not :: Bool à Bool
not False = True
not True = False

l To simplify expressions of the form not e: first e is
reduced to normal form.
n If e cannot be reduced to normal form then the value of

not e is undefined
n not ⊥ = ⊥ then not is strict.

28Chapter 15: Functional Programming

Simple Data Types: booleans

There are not two but thee boolean
values: True, False, and ⊥.

Every datatype declaration introduces
an extra anonymous value, the
undefined value of the datatype.
More examples: conjunction,
disjunction.

29Chapter 15: Functional Programming

Simple Data Types: booleans

This is how pattern matching works:
⊥ ∧ True = ⊥
⊥ ∧ False = ⊥
False ∧ ⊥ = False
True ∧ ⊥ = ⊥

n ∧ is strict in its LHS, but nonstrict in its
RHS argument.

30Chapter 15: Functional Programming

Booleans: equality operators

There are two equality operators = = and
≠

(==) :: Bool à Bool à Bool
x == y = (x∧y) ∨ (not x ∧ not y)
(≠) :: Bool à Bool à Bool
x ≠ y = not(x == y)

The symbol == is used to denote a
computable test for equality.
The symbol = is used both in definitions
and its normal mathematical sense.

6

31Chapter 15: Functional Programming

Booleans: equality operators

The main purpose of introducing an
equality test is to be able to use it with a
range of different types.
n (==) and (≠) are overloaded operations .

The proper way to introduce them is first
to declare a type class Eq consisting of all
those types for which (==) and (≠) are to
be defined.

32Chapter 15: Functional Programming

Booleans: equality operators

class Eq α where
(=),(≠) :: α à α à Bool

n To declare that a certain type is an instance
of the type class Eq, an instance declaration is
needed.
instance Eq Bool where
(x == y) = (x ∧ y) ∨ (not x ∧ not y)
(x ≠ y) = not(x == y)

33Chapter 15: Functional Programming

Booleans: comparison
operators

Booleans can also be compared.
n Comparison operations are also overloaded

and make sense with elements from a
number of different types.

class (Eq α) ⇒ Ord α where
(<),(≤),(≥),(>) :: α à α à Bool
(x ≤ y) = (x < y) ∨ (x == y)
(x ≥ y) = (x > y) ∨ (x == y)
(x > y) = not(x ≤ y)

34Chapter 15: Functional Programming

Booleans: comparison
operators

Bool could be an instance of Ord:
instance Ord Bool where

False ≤ False = False
False ≤ True = True
True ≤ False = False
True ≤ True = False

35Chapter 15: Functional Programming

Example: leap years

Define a function to determine whether a
year is a leap year or not.
n A leap year is divisible by 4, except that if it is

divisible by 100, then it must also be divisible by
400.
leapyear :: Int à Bool
leapyear y = (y mode 4 == 0) ∧

(y mode 100 ≠ 0 ∨ (y mode 400 == 0)

n Using conditional expressions:
leapyear y = if (y mode 100==0)

then (y mode 400 ==0)
else (y mode 4 == 0)

36Chapter 15: Functional Programming

Characters

Characters are denoted by enclosing them
in single quotation marks.
n Remember: the character ‘7’ is different from

the decimal number 7.

Two primitive functions are provided for
processing characters, ord and chr.
n Their types are:

ord :: Char à Int
chr :: Int à Char

7

37Chapter 15: Functional Programming

Characters

n The function ord converts a character c to an
integer ord c in the range 0 ≤ ord c ≤ 256

n The function chr does the reverse, converting
an integer back into the character it
represents.

n Thus chr (ord c) = c for all characters c.

? ord‘b’ ? chr98
98 ‘b’

? chr(ord’b’+1)
‘c’

38Chapter 15: Functional Programming

Characters

Characters can be compared and
tested for equality.

instance Eq Char where
(x == y) = (ord x == ord y)

instance Ord Char where
(x < y) = (ord x < ord y)

? ‘0’ < ‘9’ ? ‘A’ < ‘Z’
True True

39Chapter 15: Functional Programming

Characters: simple functions

Three functions for determining whether a
character is a digit, lower-case letter, or upper-case
letter:

isDigit,isLower,isUpper :: Char à Bool
isDigit c = (‘0’ ≤ c) ∧ (c ≤ ‘9’)
isLower c = (‘a’ ≤ c) ∧ (c ≤ ‘z’)
isUpper c = (‘A’ ≤ c) ∧ (c ≤ ‘Z’)

A function for converting lower-case letter to upper-
case:

capitalise :: Char à Char
capitalise c = if isLower c then

chr(offset+ord c) else c
where offset = ord ‘A’ – ord ‘a’

40Chapter 15: Functional Programming

Enumerations

They are user-defined types.
Example:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

n This definition binds the name Day to a new type
that consists of eight distinct values, seven of
which are represented by the given constants
and the eight by the undefined value ⊥

The seven new constants are called the constructors
of the datatype Day.
By convention, constructor names and the new name
begin with an upper-case letter.

41Chapter 15: Functional Programming

Enumerations

It is possible to compare elements of type
Day, so Day can be declared as an
instance of the type classes Eq and Ord.
n A definition of (==) and (<) based on pattern

matching would involve a large number of
equations.

Better idea. Code elements of Day as
integers, and use integer comparison
instead.

42Chapter 15: Functional Programming

Enumerations

Since the same idea can be employed with other
enumerated types, a new type class Enum is
declared
n Enum describes types whose elements can be

enumerated.
class Enum α where

fromEnum :: α à Int
toEnum :: Int à α

n A type is declared an instance of Enum by giving
definition of toEnum and fromEnum, functions that
convert between elements of the type and Int.

8

43Chapter 15: Functional Programming

Enumerations: example

Day is a member of Enum:

instance Enum Day where
fromEnum Sun = 0
fromEnum Mon = 1
fromEnum Tue = 2
fromEnum Wed = 3
fromEnum Thu = 4
fromEnum Fri = 5
fromEnum Sat = 6

44Chapter 15: Functional Programming

Enumerations: example

Given fromEnum on Day:
instance Eq Day where
(x == y) = (fromEnum x == fromEnum y)

instance Ord Day where
(x < y) = (fromEnum x < fromEnum y)

45Chapter 15: Functional Programming

Enumerations: example

workday :: Day à Bool
workday d = (Mon ≤ d) ∧ (d ≤ Fri)

restday :: Day à Bool
restday d = (d==Sat) ∨ (d==Sun)

dayafter :: Day à Day
dayafter d = toEnum((fromEnum d+1) mod 7)

46Chapter 15: Functional Programming

Automatic instance declarations

Haskell provides a mechanism for
declaring a type as an instance of Eq,
Ord, and Enum in one declaration.

data Day = Sun | Mon | Tue | Wed |
Thu | Fri | Sat
deriving (Eq,Ord,Enum)

n The deriving clause causes the evaluator to
generate instance declarations of the named
type classes automatically.

47Chapter 15: Functional Programming

Tuples
One way of combining types to form new
ones is by pairing them.
n Example: (Integer, Char) consists of all

pairs of values (x,c) for which x is an
arbitrary-precision integer, and c is a
character.

Like other types, the type (α,β) contains
an additional value ⊥

48Chapter 15: Functional Programming

Tuples: practical example

A function returns a pair of numbers, the
two real roots of a quadratic equation with
coefficients (a,b,c):

roots :: (Float, Float, Float) à (Float,Float)
roots (a,b,c)

| a == 0 = error “not quadratic”
| e < 0 = error “complex roots”
| otherwise = ((-b-r)/d,(-b+r)/d)
where r = sqrt e

d = 2*a
e = b*b-4*a*c

9

49Chapter 15: Functional Programming

Other Types

A type can be declared by typing its constants or
with values that depend on those of other types.

data Either = Left Bool | Right Char

n This declares a type Either whose values are
denoted by expressions of the form Left b, where b
is a boolean, and Right c, where c is a character.

n There are 3 boolean values (including ⊥) and 257
characters (including ⊥), so there are 261 distinct
values of the type Either; these include Left ⊥,
Right ⊥, and ⊥

50Chapter 15: Functional Programming

Other Types

In general:
data Either α β = Left α | Right β

The names Left and Right introduces
two constructors for building values of type
Either, these constructors are nonstrict
functions with types:

Left :: α à Either α β
Right :: β à Either α β

51Chapter 15: Functional Programming

Other Types

Assuming that values of types α and β can be
compared, comparison on that type Either α β
can be added as an instance declaration:

instance (Eq α,Eq β) ⇒ Eq(Either α β) where
Left x == Left y = (x==y)
Left x == Right y = False
Right x == Left y = False
Right x == Right y = (x==y)

instance (Ord α,Ord β) ⇒ Ord(Either α β) where
Left x < Left y = (x<y)
Left x < Right y = True
Right x < Left y = False
Right x < Right y = (x<y)

52Chapter 15: Functional Programming

Type Synonyms

Type synonym declaration: a simple
notation for giving alternative names to
types.
Example:

roots :: (Float, Float, Float) à (Float,Float)

n As an alternative, two type synonyms could
be used
type Coeffs = (Float, Float, Float)
type Roots = (Float,Float)

53Chapter 15: Functional Programming

Type Synonyms

n This declarations do not introduce new types
but merely alternative names for existing
types.
roots :: Coeffs à Roots

n This new description is shorter and more
informative.

Type synonyms can be general.
type Pairs α = (α,α)
type Automorph α = α à α
type Flag α = (α,Bool)

54Chapter 15: Functional Programming

Type Synonyms

Type synonyms cannot be declared in
terms of each other since every synonym
must be expressible in terms of existing
types.
Synonyms can be declared in terms of
another synonym.

type Bools = PairBool

Synonyms and declarations can be mixed
data OneTwo α = One α | Two(Pairs α)

10

55Chapter 15: Functional Programming

Strings

A list of characters is called a string.
The type String is a synonym type:

type String = [Char]

Syntax: the characters of a string are
enclosed in double quotation marks.
‘a’ vs. “a”
n the former is a character
n the latter is a list of characters that happens to

contain only one element.

56Chapter 15: Functional Programming

Strings

Strings cannot be declared separately as
instances of Eq and Ord because they are just
synonyms.
n They inherit whatever instances are declared for

general lists.
Comparison on strings follow the normal
lexicographic ordering.

? “hello” < “hallo”
False
? “Jo” < “Joanna”
True

57Chapter 15: Functional Programming

Strings

Haskell provides a primitive command for
printing strings.

putStr :: String à IO()
n Evaluating the command putStr causes the string to

be printed literally.
? putStr “Hello World”
Hello World
? putStr “This sentence contains \n a newline”
This sentence contains
a newline

58Chapter 15: Functional Programming

The type class Show

Haskell provides a special type class Show
to display information of different kinds
and formats.

class Show α where
showsPrec :: Int à α à String à String

n The function showsPrec is provided for
displaying values of type α

n Using showsPrec it is possible to define a
simpler function that takes a value and
converts it to a string.

show :: Show α ⇒ α à String

59Chapter 15: Functional Programming

The type class Show

Example: if Bool is declares to be a member of
Show and show is defined for booleans as

show False = "False"
show True = "True"
? putStr(show True)
True

Some instances of Show are provided as
primitive.

? putStr("The year is "++ show(3*667))
The year is 2001

