
1

Chapter 15

Functional Programming

2Chapter 15: Functional Programming

Topics

Introduction
Functional programs
Mathematical functions
Functional forms
Lambda calculus
Eager and lazy evaluation
Haskell

3Chapter 15: Functional Programming

Introduction

Emerged in the early 1960s for Artificial
Intelligence and its subfields:
n Theorem proving
n Symbolic computation

n Rule-based systems
n Natural language processing

The original functional language was Lisp,
developed by John McCarthy (1960)

4Chapter 15: Functional Programming

Functional Programs

A program is a description of a specific
computations.
n A program can be seen as a “black box” for

obtaining outputs from inputs.

n From this point of view, a program is
equivalent to a mathematical function.

5Chapter 15: Functional Programming

Mathematical Functions

A function is a rule that associates to each
x from some set X of values a unique y
from another set Y of values.
n In mathematical terminology, if f is the name

of the function
y = f(X) or
f: X à Y

n The set X is called the domain of f.
n The set Y is called the range of f.

6Chapter 15: Functional Programming

Mathematical Functions

n The x in f(x), which represents any value from
X (domain), is called independent variable.

n The y from the set Y (range), defined by the
equation y = f(x) is called dependent variable.

n Sometimes f is not defined for all x in X, it is
called a partial function . Otherwise it is a total
function.

Example: square(x) = x * x

function
name parameters

mapping
expressions

2

7Chapter 15: Functional Programming

Mathematical Functions

Everything is represented as a mathematical
function:
n Program: x represents the input and y

represents the output.
n Procedure or function: x represents the

parameters and y represents the returned
values.

No distinction between a program, a
procedure, and a function. However, there is
a clear distinction between input an output
values.

8Chapter 15: Functional Programming

Mathematical Functions:
variables

In imperative programming languages,
variables refer to memory locations as well
as values.

x = x + 1

n Means “update the program state by adding 1 to the
value stored in the memory cell named x and then
storing that sum back into that memory cell”

n The name x is used to denote both a value (as in x+1),
often called an r-value, and a memory address, called
an l-value.

9Chapter 15: Functional Programming

Mathematical Functions:
variables

In mathematics, variables always stand for
actual values, there is no concept of
memory location (l-values of variables).
n Eliminates the concept of variable, except as

a name for a value.

n Eliminates assignment as an available
operation.

10Chapter 15: Functional Programming

Mathematical Functions:
variables

Consequences of the lack of variables
and assignment

1. No loops.
n The effect of a loop is modeled via recursion,

since there is no way to increment or decrement
the value of variables.

2. No notation of the internal state of a function.
l The value of any function depends only on the

values of its parameters, and not on any previous
computations, including calls to the function itself.

11Chapter 15: Functional Programming

Mathematical Functions:
variables

l The value of a function does not depend on the
order of evaluation of its parameters.

l The property of a function that its value depend
only on the values of its parameters is called
referential transparency.

3. No state.
n There is no concept of memory locations with

changing values.
n Names are associated to values which once the

value is set it never changes.

12Chapter 15: Functional Programming

Mathematical Functions

Functional Forms
n Def: A higher-order function, or functional

form, is one that either takes functions as
parameters or yields a function as its result,
or both

3

13Chapter 15: Functional Programming

Functional Forms

1. Function Composition
n A functional form that takes two functions as

parameters and yields a function whose value
is the first actual parameter function applied to
the application of the second

Form: h ≡ f ° g

which means h (x) ≡ f (g (x))

For f (x) ≡ x * x * x and
g (x) ≡ x + 3,

h ≡ f ° g yields (x + 3)* (x + 3)* (x + 3)
14Chapter 15: Functional Programming

Functional Forms

2. Construction
n A functional form that takes a list of

functions as parameters and yields a list of
the results of applying each of its parameter
functions to a given parameter

Form: [f, g]
For f (x) ≡ x * x * x and

g (x) ≡ x + 3,

[f, g] (4) yields (64, 7)

15Chapter 15: Functional Programming

Functional Forms

3. Apply-to-all
n A functional form that takes a single function

as a parameter and yields a list of values
obtained by applying the given function to
each element of a list of parameters

Form: α
For h (x) ≡ x * x * x

α(h, (3, 2, 4)) yields (27, 8, 64)

16Chapter 15: Functional Programming

Pure Functional Programming

In pure functional programming there are
no variables, only constants, parameters,
and values.
Most functional programming languages
retain some notation of variables and
assignment, and so are “impure”
n It is still possible to program effectively using

the pure approach.

17Chapter 15: Functional Programming

Lambda Calculus

The foundation of functional programming
developed by Church (1941).
A lambda expression specifies the parameters
and definition of a function, but not its name.
n Example: lambda expression that defined the

function square:
(λx⋅x*x)

n The identifier x is a parameter for the (unnamed)
function body x*x.

18Chapter 15: Functional Programming

Lambda Calculus

Application of a lambda expression to a
value: ((λx⋅x*x)2) which evaluates to 4
What is a lambda expression?

1. Any identifier is a lambda expression.
2. If M and N are lambda expressions, then the

application of M to N , written (MN) is a lambda
expression.

3. An abstraction, written (λx⋅M) where x is an
identifier and M is a lambda expression, is also
a lambda expression.

4

19Chapter 15: Functional Programming

Lambda Expressions: BNF

A simple BNF grammar for the syntax of
the lambda calculus

LambdaExpression à ident | (M N) | (λ ident ⋅ M)
M à LambdaExpression
N à LambdaExpression

Examples:
x

(λx⋅x)
((λx⋅x)(λy⋅y))

20Chapter 15: Functional Programming

Lambda Expressions: free and
bound variables

In the lambda expression (λx⋅M)
n The identifier x is said to be bound in the

subexpression M.
n Any identifier not bound in M is said to be free.
n Free variables are like globals and bound

variables are like locals.
n Free variables can be defined as:

free(x) = x
free(MN) = free(M) ∪ free(N)
free(λx⋅M) = free(M) – {x}

21Chapter 15: Functional Programming

Lambda Expressions:
substitution

A substitution of an expression N for a variable
x in M, written M[N/x], is defined:

1. If the free variable of N have no bound occurrences
in M, then the term M[N/x] is formed by replacing all
free occurrences of x in M by N.

2. Otherwise, assume that the variable y is free in N
and bound in M. Then consistently replace the
binding and corresponding bound occurrences of y
in M by a new variable, say u. Repeat this renaming
of bound variables in M until the condition in Step 1
applies, then proceed as in Step 1.

22Chapter 15: Functional Programming

Lambda Expressions:
substitution

Examples:
x[y/x] = y
(xx)[y/x] = (yy)
(zw)[y/x] = (zw)
(zx)[y/x] = (zy)
[λx⋅(zx))[y/x] = (λu ⋅(zu))[y/x] = (λu ⋅(zu))

23Chapter 15: Functional Programming

Lambda Expressions: beta-
reduction

The meaning of a lambda expression is
defined by the beta-reduction rule:

((λx⋅M)N) ⇒ M[N/x]

An evaluation of a lambda expression is a
sequence P ⇒ Q ⇒ R ⇒ …
n Each expression in the sequence is obtained by

the application of a beta-reduction to the
previous expression.
((λy⋅((λx ⋅xyz)a))b) ⇒ ((λy ⋅ayz)b) ⇒ (abz)

24Chapter 15: Functional Programming

Functional Programming vs.
Lambda Calculus

A functional programming languages is
essentially an applied lambda calculus
with constant values and functions build in.
n The pure lambda expression (xx) can be

written as (x times x) or (x*x) or (* x x)
n When constants, such as numbers, are added

(with their usual interpretation and definitions
for functions, such as *), then applied lambda
calculi is obtained

5

25Chapter 15: Functional Programming

Eager Evaluation

An important distinction in functional
languages is usually made in the way they
define function evaluation.
Eager Evaluation or call by value: In
languages such as Scheme, all arguments
to a function are normally evaluated at the
time of the call.
n Functions such as if and and cannot be

defined without potential run-time error

26Chapter 15: Functional Programming

Eager Evaluation

(if (= x 0) 1 (/ 1 x))

n Defined the value of the function to be 1 when
x is zero and 1/x otherwise.

n If all arguments to the if functions are
evaluated at the time of the call, division by
zero cannot be prevented.

27Chapter 15: Functional Programming

Lazy Evaluation

An alternative to the eager evaluation
strategy is lazy evaluation or call by name,
in which an argument to a function is not
evaluated (it is deferred) until it is needed.
n It is the default mechanism of Haskell.

28Chapter 15: Functional Programming

Eager vs. Lazy Evaluation

An advantage of eager evaluation is
efficiency in that each argument passed to
a function is only evaluated once,
n In lazy evaluation, an argument to a function

is reevaluated each time it is used, which can
be more than once.

An advantage of lazy evaluation is that it
permits certain interesting functions to be
defined that cannot be implemented as
eager languages

Haskell

30Chapter 15: Functional Programming

Haskell

The interactive use of a functional language is
provided by the HUGS (Haskell Users Gofer
System) environment developed by Mark Jones
of Nottingham University.

HUGS is available from

http://www.haskell.org/hugs/
The Haskell web page is
http://www.haskell.org/

6

31Chapter 15: Functional Programming

Haskell: sessions

Expressions can be typed directly into the
Hugs/Haskell screen.
n The computer will respond by displaying the

result of evaluating the expression, followed
by a new prompt on a new line, indicating that
the process can begin again with another
expression
? 6 * 7
42

This sequence of interactions between
user and computer is called a session.

32Chapter 15: Functional Programming

Haskell: scripts

Scripts are collections of definitions supplied
by the programmer.
square :: Integer à Integer
square x = x * x
smaller :: (Integer,Integer) à Integer
smaller (x,y)= if x ≤ y then x else y

Given the previous script, the following session is
now possible:
? square 3768 ? square(smaller(5,3+4))
14197824 25

33Chapter 15: Functional Programming

Haskell: scripts

The purpose of a definition of a function is
to introduce a binding associating a given
name with a given definition.
n A set of bindings is called an environment or

context.
Expressions are always evaluated in some context
and can contain occurrences of the names found
in that context.
The Haskell evaluator uses the definitions
associated with those names as rules for
simplifying expressions.

34Chapter 15: Functional Programming

Haskell: scripts

Some expressions can be evaluated
without having to provide a context.
n Those operations are called primitives (the

rules of simplification are build into the
evaluator).

Basic operations of arithmetic.
Other libraries can be loaded.

At any point, a script can be modified and
resubmitted to the evaluator.

35Chapter 15: Functional Programming

Haskell: first things to remember

Scripts are collections of definitions supplied by
the programmer.
Definitions are expressed as equations between
certain kinds of expressions and describe
mathematical functions.
n Definitions are accompanied by type signatures.

During a session, expressions are submitted for
evaluation
n These expressions can contain references to the

functions defined in the script, as well as references
to other functions defined in libraries.

36Chapter 15: Functional Programming

Haskell: evaluation

The computer evaluates an expression by
reducing it to its simplest equivalent form
and displaying the result.
n This process is called evaluation, simplification,

or reduction.
n Example: square(3+4)
n An expression is canonical or in normal form If

it cannot be further reduced.

7

37Chapter 15: Functional Programming

Haskell: evaluation

A characteristic feature of functional
programming is that if two different
reduction sequences terminate, they lead
to the same result.
n For some expressions some ways of

simplification will terminate while other do not.
n Example: three infinity
n Lazy evaluation guarantees termination

whenever termination is possible

38Chapter 15: Functional Programming

Getting Started with Hugs
% hugs
Type : ? for help
Prelude> 6*7
42
Prelude> square(smaller(6,9))
ERROR – Undefined variable “smaller”
Prelude> sqrt(16)
4.0
Prelude> :load example1.hs
Reading file “example1.hs”
Main> square(smaller(6,9))
36

39Chapter 15: Functional Programming

Getting Started with Hugs

Typing :? In Hugs will produce a list of possible
commands.

Typing :quit will exit Hugs
Typing :reload will repeat last load command
Typing :load will clear all files

