Chapter 15

Functional Programming

Topics

@Introduction

@Functional programs
<«Mathematical functions
@Functional forms
@Lambda calculus

@Eager and lazy evaluation
@Haskell

Chapter 15: Functional Programming 2

Introduction

@Emerged in the early 1960s for Artificial
Intelligence and its subfields:
=« Theorem proving
= Symbolic computation
» Rule-based systems
= Natural language processing

@The original functional language was Lisp,
developed by John McCarthy (1960)

Chapter 15: Functional Programming 3

Functional Programs

@A program is a description of a specific
computations.

= A program can be seen as a “black box” for
obtaining outputs from inputs.

= From this point of view, a program is
equivalent to a mathematical function.

Chapter 15: Functional Programming 4

Mathematical Functions

@A function is a rule that associates to each
x from some set X of values a unique y
from another set Y of values.

= In mathematical terminology, if f is the name
of the function
y = f(X) or
f: X>Y
= The set X is called the domain of f .
= The set Y is called the range of f .

Chapter 15: Functional Programming 5

Mathematical Functions

= The x inf (x), which represents any value from
X (domain), is called independent variable.

= They from the setY (range), defined by the
equationy = f (x) is called dependent variable.

= Sometimes f is not defined for all x in X, it is
called a partial function. Otherwise it is a total
function.

QExample:/sa;ﬁare(i(r =X*x

mapping
function expressions

parameters
name

Chapter 15: Functional Programming 6

Mathematical Functions

@Everything is represented as a mathematical
function:
= Program: x represents the input and y
represents the output.

= Procedure or function: x represents the
parameters and y represents the returned
values.

@No distinction between a program, a
procedure, and a function. However, there is
a clear distinction between input an output
values.

Chapter 15: Functional Programming 7

Mathematical Functions:
variables

2In imperative programming languages,
variables refer to memory locations as well
as values.
X =x +1
= Means “update the program state by adding 1 to the

value stored in the memory cell named x and then
storing that sum back into that memory cell”

= The name x is used to denote both a value (as in x+1),

often called an r-value, and a memory address, called
an l-value.

Chapter 15: Functional Programming 8

Mathematical Functions:
variables

@ln mathematics, variables always stand for
actual values, there is no concept of
memory location (I-values of variables).

= Eliminates the concept of variable, except as
a name for a value.

= Eliminates assignment as an available
operation.

Chapter 15: Functional Programming 9

Mathematical Functions:
variables

& Consequences of the lack of variables
and assignment
1+ No loops.

B The effect of a loop is modeled via recursion,
since there is no way to increment or decrement
the value of variables.

> No notation of the internal state of a function.

® The value of any function depends only on the
values of its parameters, and not on any previous
computations, including calls to the function itself.

Chapter 15: Functional Programming 10

Mathematical Functions:
variables

® The value of a function does not depend on the
order of evaluation of its parameters.

® The property of a function that its value depend
only on the values of its parameters is called
referential transparency.

s No state.

B There is no concept of memory locations with
changing values.

B Names are associated to values which once the
value is set it never changes.

Chapter 15: Functional Programming 11

Mathematical Functions

@Functional Forms
= Def: A higher-order function, or functional
form, is one that either takes functions as

parameters or yields a function as its result,
or both

Chapter 15: Functional Programming 12

Functional Forms

1. Function Composition

= A functional form that takes two functions as
parameters and yields a function whose value
is the first actual parameter function applied to
the application of the second
Form:h e f ° g
which meansh (x) ©f (g (x))
For f (x) ©x * x * x and
g (x) °x+3
hof ° gyields(x + 3)* (x + 3)* (x + 3)

Chapter 15: Functional Programming 13

Functional Forms

2. Construction

= A functional form that takes a list of
functions as parameters and yields a list of
the results of applying each of its parameter
functions to a given parameter
Form: [f, q]
For f (x) ©x * x * x and

g (x) °x + 3,

[f, g] (4) yields (64, 7)

Chapter 15: Functional Programming 14

Functional Forms

3. Apply-to-all
= A functional form that takes a single function
as a parameter and yields a list of values
obtained by applying the given function to
each element of a list of parameters

Form: a
Forh (x) © x * x * x

a(h, (3, 2, 4)) vyields (27, 8, 64)

Chapter 15: Functional Programming 15

Pure Functional Programming

<In pure functional programming there are
no variables, only constants, parameters,
and values.

@Most functional programming languages
retain some notation of variables and
assignment, and so are “impure”

= It is still possible to program effectively using
the pure approach.

Chapter 15: Functional Programming 16

Lambda Calculus

@The foundation of functional programming
developed by Church (1941).

@A lambda expression specifies the parameters
and definition of a function, but not its name.

= Example: lambda expression that defined the
function squar e:
(Ixx*x)
= The identifier x is a parameter for the (unnamed)
function body x* x.

Chapter 15: Functional Programming 17

Lambda Calculus

@ Application of a lambda expression to a
value: ((Ixx*x) 2) which evaluates to 4
% What is a lambda expression?
1 Any identifier is a lambda expression.
> IfMand N are lambda expressions, then the
application of Mto N, written (MN) is a lambda
expression.
s An abstraction, written (I xM) where x is an
identifier and Mis a lambda expression, is also
a lambda expression.

Chapter 15: Functional Programming 18

Lambda Expressions: BNF

@A simple BNF grammar for the syntax of
the lambda calculus
LambdaExpression - ident | (M N) | (ident xM)
M - LambdaExpression
N - LambdaExpression
@Examples:
X
(1x%)
(Crxx) (lyx¥))

Chapter 15: Functional Programming 19

Lambda Expressions: free and
bound variables

@In the lambda expression (| x>M)

= The identifier x is said to be bound in the
subexpression M
= Any identifier not bound in Mis said to be free.
= Free variables are like globals and bound
variables are like locals.
= Free variables can be defined as:
free(x) = x
free(M)) = free(M E free(N)
free(IxM = free(M - {x}

Chapter 15: Functional Programming 20

Lambda Expressions:
substitution

@ A substitution of an expression N for a variable
x in M written M N/ x] , is defined:

1. If the free variable of Nhave no bound occurrences
in M then the term M N x] is formed by replacing all
free occurrences of x in Mby N.

> Otherwise, assume that the variable y is free in N
and bound in M Then consistently replace the
binding and corresponding bound occurrences of y
in Mby a new variable, say u. Repeat this renaming
of bound variables in Muntil the condition in Step 1
applies, then proceed as in Step 1.

Chapter 15: Functional Programming 21

Lambda Expressions:
substitution

@Examples:
x[y/x] =y
(xx)[y/x] = (yy)
(zw [y/x] = (zw)

(z2)[y/x] = (zy)
[Ixtzx))[y/x] = (Tuxzu))[y/x] = (luxzu))

Chapter 15: Functional Programming 22

Lambda Expressions: beta-
reduction

@The meaning of a lambda expression is
defined by the beta-reduction rule:
((IxXMN) P MNX]
@An evaluation of a lambda expression is a
sequenceP b Qb R b

» Each expression in the sequence is obtained by
the application of a beta-reduction to the
previous expression.

((lyx(Ixxyz)a))b) b ((lyayz)b) P (abz)

Chapter 15: Functional Programming 23

Functional Programming vs.
Lambda Calculus

@A functional programming languages is
essentially an applied lambda calculus
with constant values and functions build in.

= The pure lambda expression (xx) can be
written as (x times x) or (x*x) or (* x X)

= When constants, such as numbers, are added
(with their usual interpretation and definitions
for functions, such as *), then applied lambda
calculi is obtained

Chapter 15: Functional Programming 24

Eager Evaluation

@An important distinction in functional
languages is usually made in the way they
define function evaluation.

@Eager Evaluation or call by value: In
languages such as Scheme, all arguments
to a function are normally evaluated at the
time of the call.

= Functions such asi f and and cannot be
defined without potential run-time error

Chapter 15: Functional Programming 25

Eager Evaluation

(if (=x0)1(/ 1x))

= Defined the value of the function to be 1 when
X is zero and 1/x otherwise.

= If all arguments to the if functions are
evaluated at the time of the call, division by
zero cannot be prevented.

Chapter 15: Functional Programming 26

Lazy Evaluation

@An alternative to the eager evaluation
strategy is lazy evaluation or call by name,
in which an argument to a function is not
evaluated (it is deferred) until it is needed.

= It is the default mechanism of Haskell.

Chapter 15: Functional Programming 27

Eager vs. Lazy Evaluation

@An advantage of eager evaluation is
efficiency in that each argument passed to
a function is only evaluated once,

= In lazy evaluation, an argument to a function
is reevaluated each time it is used, which can
be more than once.

@An advantage of lazy evaluation is that it
permits certain interesting functions to be
defined that cannot be implemented as
eager languages

Chapter 15: Functional Programming 28

Haskell

Haskell

@ The interactive use of a functional language is
provided by the HUGS (Haskell Users Gofer
System) environment developed by Mark Jones
of Nottingham University.

@ HUGS is available from
http://www.haskell.org/hugs/

& The Haskell web page is
http://www.haskell.org/

Chapter 15: Functional Programming 30

Haskell; sessions

@Expressions can be typed directly into the
Hugs/Haskell screen.
= The computer will respond by displaying the
result of evaluating the expression, followed
by a new prompt on a new line, indicating that
the process can begin again with another
expression
?76*7
42
@This sequence of interactions between
user and computer is called a session.

Chapter 15: Functional Programming

Haskell: scripts

@Scripts are collections of definitions supplied
by the programmer.

square :: Integer > Integer
square X = X * X
smaller :: (Integer,lnteger) - Integer

smaller (x,y)=if x £y then x else y

@Giventhe previous script, the following session is
now possible:
? square 3768 ? square(smal |l er (5, 3+4))

14197824 25

Chapter 15: Functional Programming 32

Haskell: scripts

@The purpose of a definition of a function is
to introduce a binding associating a given
name with a given definition.

= A set of bindings is called an environmentor

context.
@#Expressions are always evaluated in some context
and can contain occurrences of the names found
in that context.

#The Haskell evaluator uses the definitions
associated with those names as rules for

simplifying expressions.

Chapter 15: Functional Programming

Haskell: scripts

@Some expressions can be evaluated
without having to provide a context.
= Those operations are called primitives (the
rules of simplification are build into the
evaluator).
@Basic operations of arithmetic.
#Other libraries can be loaded.
@At any point, a script can be modified and
resubmitted to the evaluator.

Chapter 15: Functional Programming 34

Haskell: first things to remember

@ Scripts are collections of definitions supplied by
the programmer.

2 Definitions are expressed as equations between
certain kinds of expressions and describe
mathematical functions.

= Definitions are accompanied by type signatures.
@ During a session, expressions are submitted for
evaluation
= These expressions can contain references to the
functions defined in the script, as well as references
to other functions defined in libraries.

Chapter 15: Functional Programming

Haskell: evaluation

@The computer evaluates an expression by
reducing it to its simplest equivalent form
and displaying the result.

= This process is called evaluation, simplification,
or reduction.

= Example: squar e(3+4)

= An expression is canonical or in normal form If
it cannot be further reduced.

Chapter 15: Functional Programming 36

Haskell: evaluation

@A characteristic feature of functional
programming is that if two different
reduction sequences terminate, they lead
to the same result.
= For some expressions some ways of

simplification will terminate while other do not.
=« Example:three infinity
= Lazy evaluation guarantees termination
whenever termination is possible

Chapter 15: Functional Programming 37

Getting Started with Hugs

% hugs

Type : ? for help

Prel ude> 6*7

42

Prel ude> square(smaller(6,9))
ERROR — Undefined variable “smaller”
Prel ude> sqrt (16)

4.0

Prel ude> : | oad exanpl el. hs
Readi ng file “exanpl el. hs”

Mai n> square(smal |l er(6,9))

36

Chapter 15: Functional Programming

38

Getting Started with Hugs

Typing : ? In Hugs will produce a list of possible
commands.

Typing : qui t will exit Hugs

Typing : r el oad will repeat last load command

Typing : | oad will clear all files

Chapter 15: Functional Programming 39

