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Introduction

Emerged in the early 1960s for Artificial 
Intelligence and its subfields:
n Theorem proving
n Symbolic computation

n Rule-based systems
n Natural language processing

The original functional language was Lisp, 
developed by John McCarthy (1960)
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Functional Programs

A program is a description of a specific 
computations.
n A program can be seen as a “black box” for 

obtaining outputs from inputs.

n From this point of view, a program is 
equivalent to a mathematical function.
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Mathematical Functions

A function is a rule that associates to each 
x from some set X of values a unique y
from another set Y of values. 
n In mathematical terminology, if f is the name 

of the function
y = f(X) or
f: X à Y

n The set X is called the domain of f.
n The set Y is called the range of f.
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Mathematical Functions

n The x in f(x), which represents any value from 
X (domain), is called independent variable.

n The y from the set Y (range), defined by the 
equation y = f(x) is called dependent variable.

n Sometimes f is not defined for all x in X, it is 
called a partial function . Otherwise it is a total 
function.

Example:    square(x) = x * x 

function 
name parameters

mapping
expressions
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Mathematical Functions

Everything is represented as a mathematical 
function:
n Program: x represents the input and y

represents the output.
n Procedure or function: x represents the 

parameters and y represents the returned 
values.

No distinction between a program, a 
procedure, and a function. However, there is 
a clear distinction between input an output 
values.
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Mathematical Functions: 
variables

In imperative programming languages, 
variables refer to memory locations as well 
as values.

x = x + 1

n Means “update the program state by adding 1 to the 
value stored in the memory cell named x and then 
storing that sum back into that memory cell”

n The name x is used to denote both a value (as in x+1), 
often called an r-value, and a memory address, called 
an l-value.
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Mathematical Functions: 
variables

In mathematics, variables always stand for 
actual values, there is no concept of 
memory location (l-values of variables).
n Eliminates the concept of variable, except as 

a name for a value.

n Eliminates assignment as an available 
operation.
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Mathematical Functions: 
variables

Consequences of the lack of variables 
and assignment

1. No loops.
n The effect of a loop is modeled via recursion, 

since there is no way to increment or decrement 
the value of variables.

2. No notation of the internal state of a function.
l The value of any function depends only on the 

values of its parameters, and not on any previous 
computations, including calls to the function itself.
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Mathematical Functions: 
variables

l The value of a function does not depend on the 
order of evaluation of its parameters.

l The property of a function that its value depend 
only on the values of its parameters is called 
referential transparency.

3. No state.
n There is no concept of memory locations with 

changing values.
n Names are associated to values which once the 

value is set it never changes.
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Mathematical Functions

Functional Forms
n Def: A higher-order function, or functional 

form, is one that either takes functions as 
parameters or yields a function as its result, 
or both
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Functional Forms

1. Function Composition
n A functional form that takes two functions as 

parameters and yields a function whose value 
is the first actual parameter function applied to 
the application of the second

Form: h ≡ f ° g

which means h (x) ≡ f ( g ( x ))

For f (x) ≡ x * x * x and
g (x) ≡ x + 3,

h ≡ f ° g yields (x + 3)* (x + 3)* (x + 3)
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Functional Forms

2. Construction
n A functional form that takes a list of 

functions as parameters and yields a list of 
the results of applying each of its parameter 
functions to a given parameter

Form: [f, g]
For f (x) ≡ x * x * x and

g (x) ≡ x + 3,

[f, g] (4) yields (64, 7)
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Functional Forms

3. Apply-to-all
n A functional form that takes a single function 

as a parameter and yields a list of values 
obtained by applying the given function to 
each element of a list of parameters

Form: α
For h (x) ≡ x * x * x

α( h, (3, 2, 4)) yields (27, 8, 64)
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Pure Functional Programming

In pure functional programming there are 
no variables, only constants, parameters, 
and values.
Most functional programming languages 
retain some notation of variables and 
assignment, and so are “impure”
n It is still possible to program effectively using 

the pure approach.
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Lambda Calculus

The foundation of functional programming 
developed by Church (1941).
A lambda expression specifies the parameters 
and definition of a function, but not its name. 
n Example: lambda expression that defined the 

function square:
(λx⋅x*x)

n The identifier x is a parameter for the (unnamed) 
function body x*x.
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Lambda Calculus

Application of a lambda expression to a 
value: ((λx⋅x*x)2) which evaluates to 4
What is a lambda expression?

1. Any identifier is a lambda expression.
2. If M and N are lambda expressions, then the 

application of M to N , written (MN) is a lambda 
expression.

3. An abstraction, written (λx⋅M) where x is an 
identifier and M is a lambda expression, is also 
a lambda expression.
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Lambda Expressions: BNF

A simple BNF grammar for the syntax of 
the lambda calculus

LambdaExpression à ident | (M N) | (λ ident ⋅ M)
M à LambdaExpression
N à LambdaExpression

Examples:
x

(λx⋅x)
((λx⋅x)(λy⋅y))
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Lambda Expressions: free and 
bound variables

In the lambda expression (λx⋅M)
n The identifier x is said to be bound in the 

subexpression M.
n Any identifier not bound in M is said to be free.
n Free variables are like globals and bound 

variables are like locals.
n Free variables can be defined as:

free(x) = x
free(MN) = free(M) ∪ free(N)
free(λx⋅M) = free(M) – {x}
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Lambda Expressions: 
substitution

A substitution of an expression N for a variable 
x in M, written M[N/x], is defined:

1. If the free variable of N have no bound occurrences 
in M, then the term M[N/x] is formed by replacing all 
free occurrences of x in M by N.

2. Otherwise, assume that the variable y is free in N
and bound in M. Then consistently replace the 
binding and corresponding bound occurrences of y
in M by a new variable, say u. Repeat this renaming 
of bound variables in M until the condition in Step 1 
applies, then proceed as in Step 1.

22Chapter 15: Functional Programming

Lambda Expressions: 
substitution

Examples:
x[y/x] = y
(xx)[y/x] = (yy)
(zw)[y/x] = (zw)
(zx)[y/x] = (zy)
[λx⋅(zx))[y/x] = (λu ⋅(zu))[y/x] = (λu ⋅(zu))
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Lambda Expressions: beta-
reduction

The meaning of a lambda expression is 
defined by the beta-reduction rule:

((λx⋅M)N) ⇒ M[N/x]

An evaluation of a lambda expression is a 
sequence P ⇒ Q ⇒ R ⇒ …
n Each expression in the sequence is obtained by 

the application of a beta-reduction to the 
previous expression.
((λy⋅((λx ⋅xyz)a))b) ⇒ ((λy ⋅ayz)b) ⇒ (abz)
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Functional Programming vs. 
Lambda Calculus

A functional programming languages is 
essentially an applied lambda calculus 
with constant values and functions build in.
n The pure lambda expression (xx) can be 

written as (x times x) or (x*x) or (* x x)
n When constants, such as numbers, are added 

(with their usual interpretation and definitions 
for functions, such as *), then applied lambda 
calculi is obtained
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Eager Evaluation

An important distinction in functional 
languages is usually made in the way they 
define function evaluation.
Eager Evaluation or call by value: In 
languages such as Scheme, all arguments 
to a function are normally evaluated at the 
time of the call.
n Functions such as if and and cannot be 

defined without potential run-time error
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Eager Evaluation

(if ( = x 0 ) 1 ( / 1 x ))

n Defined the value of the function to be 1 when 
x is zero and 1/x otherwise.

n If all arguments to the if functions are 
evaluated at the time of the call, division by 
zero cannot be prevented.
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Lazy Evaluation

An alternative to the eager evaluation 
strategy is lazy evaluation or call by name, 
in which an argument to a function is not 
evaluated (it is deferred) until it is needed.
n It is the default mechanism of Haskell.
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Eager vs. Lazy Evaluation

An advantage of eager evaluation is 
efficiency in that each argument passed to 
a function is only evaluated once, 
n In lazy evaluation, an argument to a function 

is reevaluated each time it is used, which can 
be more than once.

An advantage of lazy evaluation is that it 
permits certain interesting functions to be 
defined that cannot be implemented as 
eager languages

Haskell
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Haskell

The interactive use of a functional language is 
provided by the HUGS (Haskell Users Gofer 
System) environment developed by Mark Jones 
of Nottingham University.

HUGS is available from 

http://www.haskell.org/hugs/
The Haskell web page is 
http://www.haskell.org/
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Haskell: sessions

Expressions can be typed directly into the 
Hugs/Haskell screen.
n The computer will respond by displaying the 

result of evaluating the expression, followed 
by a new prompt on a new line, indicating that 
the process can begin again with another 
expression
? 6 * 7
42

This sequence of interactions between 
user and computer is called a session.
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Haskell: scripts

Scripts are collections of definitions supplied 
by the programmer.
square :: Integer à Integer
square x = x * x
smaller :: (Integer,Integer) à Integer
smaller (x,y)= if x ≤ y then x else y 

Given the previous script, the following session is 
now possible:
? square 3768 ? square(smaller(5,3+4))
14197824 25
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Haskell: scripts

The purpose of a definition of a function is 
to introduce a binding associating a given 
name with a given definition.
n A set of bindings is called an environment or 

context.
Expressions are always evaluated in some context 
and can contain occurrences of the names found 
in that context.
The Haskell evaluator uses the definitions 
associated with those names as rules for 
simplifying expressions.
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Haskell: scripts

Some expressions can be evaluated 
without having to provide a context.
n Those operations are called primitives (the 

rules of simplification are build into the 
evaluator).

Basic operations of arithmetic.
Other libraries can be loaded.

At any point, a script can be modified and 
resubmitted to the evaluator.
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Haskell: first things to remember

Scripts are collections of definitions supplied by 
the programmer.
Definitions are expressed as equations between 
certain kinds of expressions and describe 
mathematical functions.
n Definitions are accompanied by type signatures.

During a session, expressions are submitted for 
evaluation 
n These expressions can contain references to the 

functions defined in the script, as well as references 
to other functions defined in libraries.
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Haskell: evaluation

The computer evaluates an expression by 
reducing it to its simplest equivalent form 
and displaying the result. 
n This process is called evaluation,  simplification, 

or reduction.
n Example: square(3+4)
n An expression is canonical or in normal form If 

it cannot be further reduced.
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Haskell: evaluation

A characteristic feature of functional 
programming is that if two different 
reduction sequences terminate, they lead 
to the same result.
n For some expressions some ways of 

simplification will terminate while other do not.
n Example: three infinity
n Lazy evaluation guarantees termination 

whenever termination is possible 

38Chapter 15: Functional Programming

Getting Started with Hugs
% hugs
Type : ? for help
Prelude> 6*7
42
Prelude> square(smaller(6,9))
ERROR – Undefined variable “smaller”
Prelude> sqrt(16)
4.0
Prelude> :load example1.hs
Reading file “example1.hs”
Main> square(smaller(6,9))
36
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Getting Started with Hugs

Typing :? In Hugs will produce a list of possible 
commands.

Typing :quit will exit Hugs
Typing :reload will repeat last load command
Typing :load will clear all files


