
1

Chapter 16

Logic Programming

2Chapter 16: Logic Programming

Input and Output

The build-in predicate read is used for 
reading terms from the current input. 
The goal read(X) will cause the next term, 
T, to be read, and this term will be matched 
with X.
n If X is a variable then X will be instantiated to 
T.

n If matching does not succeed the the goal 
fails.

3Chapter 16: Logic Programming

Input and Output

n This predicate is deterministic, so in the case 
of failure there will be no backtracking to input 
another term.

The build-in predicate write is used for 
writing terms to the current output. 
n This predicate ‘knows’ to display any term no 

matter how complicated it may be.

4Chapter 16: Logic Programming

Constructing and Decomposing 
Atoms

An atom can be converted to a sequence 
of characters using the build-in predicate 
name.
n This predicate relates atoms and their ASCII 

codes.
n name(zx232,[122,120,50,51,50]).

Two typical uses:
1. Given an atom, break it down into single 

characters.
2. Given a list of characters, combine them into 

an atom

5Chapter 16: Logic Programming

Testing the Type of Terms

Sometimes it is useful to know what is the 
type of some value.
Example: if we want to add the values of 
two variables X and Y by: Z is X + Y.
n Before this goal is executed, X and Y have to 

be instantiated to integers.
The build-in predicate integer(X) is true if 
X is an integer or if it is a variable whose 
value is an integer.
n X must ‘currently stand for’ an integer.

6Chapter 16: Logic Programming

Testing the Type of Terms

var(X) succeeds if X is currently an 
uninstantiated variable.
nonvar(X) succeeds if X is a term other 
than a variable, or X is an already 
instantiated variable.
atom(X) is true if X currently stands for an 
atom.
atomic(X) is true if X currently stands for 
an integer or an atom.



2

7Chapter 16: Logic Programming

Testing the Type of Terms

compound(X) succeeds if X is a compound 
term (a structure, including lists but not []).
number(X) succeeds if X is a number 
(integer of floating-point).
float(X) succeeds if X is a floating-point 
number. 

8Chapter 16: Logic Programming

Constructing and Decomposing 
Terms

There are three build-in predicates for 
decomposing terms and constructing new 
terms.
n Term=..L is true if L is a list that contains the 

principal functor of Term, followed by its 
arguments.

n functor(Term,F,N) is true if F is the principal 
functor of Term and N is the arity of F.

n arg(N,Term,A) is true if A is the Nth argument 
in Term , assuming that arguments are 
numbered from left to right starting with 1.

9Chapter 16: Logic Programming

Finding all Solutions to a Query

Prolog can generate, by backtracking, all 
the objects, one by one, that satisfy some 
goal.
n Each time a new solution is generated, the 

previous one disappears and is not accessible 
any more.

n Sometime we would prefer to have all 
generated objects available together.

10Chapter 16: Logic Programming

Finding all Solutions to a Query

findall(T,G,L) find each solution to G; 
instantiates variables to T to the values 
that they have in that solution; and adds 
that instantiation of T to L.
bagof(T,G,L) like findall except for its 
treatment of the free variables of G (those 
that do not occur in T).

11Chapter 16: Logic Programming

Finding all Solutions to a Query

n Whereas findall would try all possible 
values of all variables, bagof will pick the first 
set for the free variables that succeeds, and 
use only that set of values when finding the 
solution in L.

n If you ask for an alternative solution to bagof, 
you will get the results of trying another set of 
values for the free variables.

setof(T,G,L) like bagof but the elements 
of L are sorted into alphabetical order and 
duplicates are removed.


