
1

Chapter 16

Logic Programming

2Chapter 16: Logic Programming

Topics

Proving Theorems
n Resolution
n Instantiation and Unification

Prolog
n Terms
n Clauses

n Inference Process
n Backtracking

3Chapter 16: Logic Programming

Predicate Calculus and Proving
Theorems

A use of propositions is to discover new
theorems that can be inferred from known
axioms and theorems
Resolution: the process of computing
inferred propositions from given
propositions
n Resolution principle is similar to the idea of

transitivity in algebra.

4Chapter 16: Logic Programming

Resolution

Making a single inference from a pair of
Horn clauses.
n If h is the head of a Horn clause and it

matches with one of the terms of another
Horn clause, then that term can be replaced
by h.

The Horn clauses:
h ß terms
t ß t1, h, t2

The second clause is resolved to
t ß t1, terms, t2

5Chapter 16: Logic Programming

Resolution: example

Consider the following clauses:
speaks(Mary,English).
talkswith(X,Y) ß speaks(X,L), speaks(Y,L), X≠Y

Resolution allow us to deduce:
talkswith(Mary,Y) ß speaks(Mary,English),

speaks(Y,English), Mary≠Y
Variables X and L are assigned the values “Mary”
and “English” in the second rule.
The assignment of values to values during resolution
is called instantiation .

6Chapter 16: Logic Programming

Unification and Instantiation

Unification: finding values for variables in
propositions that allows matching process
to succeed
Instantiation: assigning temporary values
to variables to allow unification to succeed
After instantiating a variable with a value,
if matching fails, may need to backtrack
and instantiate with a different value.

2

7Chapter 16: Logic Programming

Resolution: Theorem Proving

Use proof by contradiction.
Hypotheses: a set of pertinent propositions
Goal: negation of theorem stated as a
proposition.
Theorem is proved by finding an
inconsistency.

8Chapter 16: Logic Programming

The language Prolog

The most widely used logic programming
language.
Prolog in a nutshell
n Uses Horn clauses

Almost identical notation of Horn clauses, except
the implication arrow “ß” is replaced by a colon
followed by a dash “:-”.

n Implements resolution using strict linear
“depth first” strategy and a unification
algorithm.

9Chapter 16: Logic Programming

A Prolog Program

Prolog approach.
n Describe known facts and relationships.

A program consists of a sequence of Horn
clauses.
n Clauses are implications of the form

p1 if p2 … &pk written as p1 :- p2 , … ,pk where every
p is a term.
n p1 is called the head and p2 , … ,pk is the body.
n The body is a list of goals separated by commas

(conjunctions).

10Chapter 16: Logic Programming

Terms

All Prolog statements are constructed from
terms.

Atoms

Numbers
Constants

Variables

Simple Terms

Compound/Complex terms (structures)

11Chapter 16: Logic Programming

Terms: atoms

Atoms are used as names of individuals
and predicates.
Atoms can be constructed in three ways:

1. Strings of letters, digits and the underscore
character, starting with a lower-case letter.
x
vancouver
ax123aBCD
abc_123_etc

12Chapter 16: Logic Programming

Terms: atoms
2. Strings of special characters .

Some of these have a predefined meaning (: -).
-->
==>

3. String of characters enclosed in single
quotes.

It can contain any character.
‘Florida’
’12$12$’
‘ back\\slashes’
’32’ is an atom, not equal to the number 32.
A zero length atom is written ‘’

3

13Chapter 16: Logic Programming

Terms: atoms

Internal representation:
n Atoms are not character strings, they are

locations in a symbol table.

n Only one copy of each atom is stored.
n All occurrences are replaced by pointers to its

location in the symbol table.
abracadabraabracazam= abracadabraabracazam
a = b

Comparison takes the same amount of time.
n Pointers get compared rather than the strings of

characters.
14Chapter 16: Logic Programming

Terms: numbers

Integer
n Useful for task such as counting the elements

of a list.

Real
n Not used very much in typical Prolog

programming.

15Chapter 16: Logic Programming

Terms: variables

Stand for objects that we cannot name.
Begins with a capital letter or ‘_’.
n X
n _value
n Mother

A variable can be
n Instantiated when there is an object that it

stands for.
n Uninstantiated when what the variable it

stands for is not yet known.
16Chapter 16: Logic Programming

Terms: variables

Question containing a variable:
n Search through all facts to find an object that

the variable could stand for.

Anonymous variable (_)
n A special variable that matches anything, but

never takes on a value.
n Successive anonymous variables in the same

clause do not take on the same value.

17Chapter 16: Logic Programming

Terms: structures
Consists of a functor followed by a
sequence of arguments.
n The functor must be an atom.

n Arguments can be any kind of terms (including
other structures).

n The outermost functor (f/2, in this case) is
called the principal functor of the structure.

f(g(h,i),j(k,1))
f

g j

h i k l 18Chapter 16: Logic Programming

Terms: structures

Internal representation
n A structure is a linked tree made of pointers to

its substructures and to entries in the symbol
table.

4

19Chapter 16: Logic Programming

Prolog Clauses

Prolog clauses are of three types:
n Facts: declare things that are always,

unconditionally true.

n Rules: declare things that are true, depending
on a given condition.

n By means of questions users can ask the
program what things are true.

20Chapter 16: Logic Programming

Prolog Clauses: characteristics

A Prolog clause:
n Arbitrary number of arguments (parameters).
n A predicate that takes N arguments is called N-

placed predicate.
n A one-place predicate describes a property of

one individual; a two-place predicate describes
a relation between two individuals.

n The number of arguments that a predicate
takes is called its arity .

21Chapter 16: Logic Programming

Prolog Clauses: characteristics

n Two distinct predicates can have the same
name if they have different arities.

mother(pam) meaning Pam is a mother.
mother(pam,bob) meaning Pam is the mother of
Bob.

n A predicate is identified by giving its name, a
slash, and its arity.

mother/1.
mother/2.

n Every Prolog statement is terminated by a
period.

22Chapter 16: Logic Programming

Facts

Define relationships between objects.
Sometimes called ground clauses because
they are the basis from which other
information is inferred.
Facts are clauses that have an empty body.
Facts are written as:
name_of_relationship(object,…,object).

A collection of facts and rules is called a
database or knowledge base.

23Chapter 16: Logic Programming

Facts: examples

parent(tom,bob).

parent(pam,bob).

parent(tom,liz).

parent(bob,ann).

parent(bob,pat).

parent(pat,jim).

PAM TOM

LIZBOB

PATANN

JIM

Family Relation

24Chapter 16: Logic Programming

Rules

Specify things that are true if some
condition is satisfied.
Rules are used to say that a fact depends
on a group of other facts.
A rules consists of a head and a body.
n Connected by the symbol ‘:-’ (if).

n The head describes what fact the rule is
intended to define.

n The body describes the conjunctions of goals
that must be satisfied for the head to be true.

5

25Chapter 16: Logic Programming

Rules: examples

For all X and Y,
Y is an offspring of X if

X is a parent of Y.

?-offspring(Y,X):-parent(X,Y).

head/conclusion body/condition

26Chapter 16: Logic Programming

Rules: examples

?-mother(X,Y):- parent(X,Y),female(X)

parent

X

Y

mother

female

27Chapter 16: Logic Programming

Rules: examples

?-grandparent(X,Z):- parent(X,Y),parent(Y,Z).

parent

X

Y grandparent

Z

parent

28Chapter 16: Logic Programming

Rules: examples

?-sister(X,Y):- parent(Z,X), parent(Z,Y),
female(X).

parent

X Y

sister

Z
parent

female

29Chapter 16: Logic Programming

Rules: exercise

Define the relation aunt(X,Y)

30Chapter 16: Logic Programming

Questions
How do we use Prolog programs?
n By posing queries (a query is a request for the

computer to do something.)
Questions are clauses that only have the
body.
n Search through the database.
n Look for facts that match the fact in question.

Two facts match if their predicates and corresponding
arguments are the same.
n YES: Prolog finds a match
n No: Prolog does not find a match (nothing matches the

question vs. false)

6

31Chapter 16: Logic Programming

Questions: example

?-parent(bob,pat).

PAM TOM

LIZBOB

PATANN

JIM

Family Relation

User Queries Prolog’s Answers

?-parent(liz,pat).

?-parent(tom,ben).

?-parent(X,liz).

?-parent(bob,X).

?-parent(X,Y).

yes

no

no

X=tom

X=ann
X=pat

X=pam
Y=bob;
X=tom
Y=bob;
…

32Chapter 16: Logic Programming

Conjunctions

More complicated relationships.
Satisfy two or more separate goals.
Commas are understood as conjunctions.
Question containing conjunctions:
n Try to satisfy each goal in turn (searching the

database).

n All goals have to be satisfied.

33Chapter 16: Logic Programming

Complex Queries: example

1. Who is a parent of Jim?
Assume that this is some Y.

2. Who is a parent of Y?
Assume that this is some X.

parent

X

Y

parent

jim

grandparent?-parent(X,Y),parent(Y,jim).

X=bob
Y=pat

Who is a grandfather of Jim?

34Chapter 16: Logic Programming

Complex Queries: example

1. Who is a child of Tom?
Assume that this is some X.

2. Who is a child of X?
Assume that this is some Y.

?-parent(tom,X),parent(X,Y).
X=bob
Y=ann

X=bob
Y=pat

parent

tom

X

parent

Y

grandchildren

Who are Tom’s grandchildren?

35Chapter 16: Logic Programming

1. Who is a parent, X, of Ann?
2. Is (this same) X a parent of Pat?

Complex Queries: example

?-parent(X,ann),parent(X,pat).
X=bob

Do Ann and Pat have a
common parent?

36Chapter 16: Logic Programming

Complex Queries: exercises

What will be Prolog’s answers to the following
questions?

1. ?-parent(jim,X).

2. ?-parent(X,jim).

3. ?-parent(pam,X), parent(X,pat).

4. ?-parent(pam,X),parent(X,Y),parent(Y,jim).

Formulate in Prolog the following questions:

1. Who is Pat’s parent?
2. Does liz have a child?
3. Who is Pat’s grandparent?

7

37Chapter 16: Logic Programming

Matching / Unification

Two terms (term1 and term2) can be
unified (matched) if they are alike or can
be made alike by instantiation.
n Instantiation: make one variable the same as

another.

38Chapter 16: Logic Programming

Matching / Unification
(1) If term1 and term2 are constants

Same atom or same number .
(2) If term1 is a variable and term2 is any type

of term
term1 is instantiated to term2

(3) If term1 and term2 are variables
They are instantiated to each other (share values).

(4) If term1 and term2 are complex terms
a. They have the same functor and arity.
b. All their corresponding arguments match.
c. The variable instantiations are compatible.

(5) Two terms match if and only if it follows from
the previous four clauses that they match.

constants

variables

complex
terms

39Chapter 16: Logic Programming

Unification: examples

?-2=2.

User Queries Prolog’s Answers

?-bob=jim.
?-’bob’=bob.
?-’2’=2.
?-bob=X.

?-X=Y.

yes
no
yes
no
X=bob
yes
yes

?-X=bob. X=jim. no

?-kill(shoot(gun),Y))=kill(X,stab(knife)).
X= shoot(gun)
Y=stab(knife)
yes

?-kill(shoot(gun),stab(knife))=kill(X,stab(Y)).
X= shoot(gun)
Y=knife
yes

40Chapter 16: Logic Programming

Inference Process of Prolog

Queries are called goals
If a goal is a compound proposition, each
of the facts is a subgoal
To prove a goal is true, must find a chain
of inference rules and/or facts. For goal
Q:
B :- A
C :- B
…
Q :- P

41Chapter 16: Logic Programming

Inference Process of Prolog

Process of proving a subgoal is called matching,
satisfying , or resolution.
Bottom-up resolution, forward chaining
n Begin with facts and rules of database and attempt to

find sequence that leads to goal
n Works well with a large set of possibly correct

answers

Top-down resolution, backward chaining
n Begin with goal and attempt to find sequence that

leads to set of facts in database.

42Chapter 16: Logic Programming

Inference Process of Prolog
n works well with a small set of possibly correct

answers
Prolog implementations use backward
chaining
When goal has more than one subgoal, can
use either
n Depth-first search: find a complete proof for the

first subgoal before working on others
n Breadth-first search: work on all subgoals in

parallel.

Prolog uses depth-first search

8

43Chapter 16: Logic Programming

A Simple Prolog Knowledge
Base

A Prolog knowledge base that describes the
location of certain North American cities.

/* 1 */ located_in(atlanta,georgia).
/* 2 */ located_in(houston,texas).
/* 3 */ located_in(austin,texas).
/* 4 */ located_in(toronto,ontario).
/* 5 */ located_in(X,usa) : - located_in(X,georgia).
/* 6 */ located_in(X,usa) : - located_in(X,texas).
/* 7 */ located_in(X,canada) :- located_in(X, ontario).
/* 8 */ located_in(X,north_america) : -

located_in(X,usa).
/* 9 */ located_in(X,north_america) : -

located_in(X,canada).

44Chapter 16: Logic Programming

Inference Process: example

Query:
?- located_in(austin,north_america).

Unifies with the head of Clause 8 by instantiating X as
austin.
The right-hand side of Clause 8 becomes the new goal.
Goal: ?- located_in(austin,north_america).
Clause 8: located_in(X,north_america) :-

located_in(X,usa).
Instantiation: X = austin
New goal: ?-located_in(austin,usa).

45Chapter 16: Logic Programming

Inference Process: example

Unify the new query with Clause 6:
Goal: ?- located_in(austin,usa).
Clause 6: located_in(X,usa) :-

located_in(X,texas).
Instantiation: X = austin
New goal: ?-located_in(austin,texas).

This query matches Clause 3. Since Clause 3 does not
contain an “if”, no new query is generated and the
process terminates successfully.

46Chapter 16: Logic Programming

Backtracking

If several rules can unify with a query, how
does Prolog know which one to use?
Prolog does not know in advance which
clause will succeed but it does know how
to black out of blind alleys.
Prolog tries the rules in order in which they
are given in the knowledge base.
n If a rule does not lead to success, it backs up

and tries another

47Chapter 16: Logic Programming

Backtracking

The query ?-located_in(austin,usa)
will try to unify with Clause 5 and then,
when that fails, the computer will back up
and try Clause 6.
A good way to conceive of backtracking is
to arrange all possible paths of
computation into a tree.
Consider the query:
?- located_in(toronto,north_america).

48Chapter 16: Logic Programming

Backtracking: example

The following tree shows all the paths that
the computation might follow.

9

49Chapter 16: Logic Programming

Backtracking: example

We can prove that Toronto is in North
America if we can prove that it is in either
the U.S.A. or Canada.
If we try the U.S.A., we have to try several
states and then Canada.
Almost all paths are blind alleys.
Only the rightmost one leads to a
successful solution.

50Chapter 16: Logic Programming

Backtracking: example

Same diagram with arrows added to show
the order in which the possibilities are
tried.

51Chapter 16: Logic Programming

Backtracking: example

Whenever the computer finds it has gone
down a blind alley, it backs up to the most
recent query for which there are still
untried alternatives, and tries another
path.
When a successful answer is found, the
process stops.

52Chapter 16: Logic Programming

Prolog Syntax: comments

Two ways to delimit comments
n Anything bracketed by /* and */
n /* This is a comment */

Anything between % and the end of the
line
n % This is also a comment

53Chapter 16: Logic Programming

Sicstus

http://www.cs.sfu.ca/CC/SW/Prolog/
Linux and SunOS machines
n CSIL SunOS machines have an additional

Prolog implementation: BinProlog.

Running Sicstus Prolog
n orion% sicstus

54Chapter 16: Logic Programming

Running Sicstus

Interactive definition mode:
n The special goal [user] is used to enter interactive

definition mode.
n In interactive mode, Prolog expects goals to establish.
n ^D (i.e., the ctrl -D key) exits definition mode.

Consulting a file
n The special query

?-consult(‘family.pl’).
asks prolog to read the definitions from the named file
in quotes.

n Goals must be terminated with a period or Prolog just
waits until you enter the period.

10

55Chapter 16: Logic Programming

Running Sicstus
n To load the same program use reconsult instead of
consult.

Otherwise, there will be two copies of it in memory at the
same time.

To exit from Prolog just type the special query
?- halt.
If a single query has multiple solutions, Prolog
finds one solution and then asks whether to look
for another (until all alternatives are found or you
stop asking for them).

56Chapter 16: Logic Programming

Running Sicstus
?- located_in(X,texas).

X = houston
More (y/n) ? y
X = austin
More (y/n) ? Y
no

n The “no”at the end means there are no more
solutions.

Any of the arguments of a predicate can be
queried.
n ?- located_in(austin,X). % Names of regions that contain Austin
n ?- located_in(X,texas). % Names of cities that are in Texas
n ?- located_in(X,Y). % “What is in what?”
n ?- located_in(X,X). % “What is in itself?”

57Chapter 16: Logic Programming

Sicstus: examples

Sample Prolog session
1: orion% sicstus
SICStus 3.8.4 (sparc-solaris-5.6): Mon Jun 12 18:49:23 MET DST 2000
Licensed to cs.sfu.ca
| ?- [user].
| member(X, [X|_]).
| member(X, [_|More]) :- member(X, More).
| ^D
|{consulted user in module user, 0 msec 336 bytes}
| ?- ['data.pl'].
{consulting /cs/gard1/dma/family.pl...}
{consulted / cs/gard1/dma/family.pl in module user, 10 msec 160 bytes}
yes
| ?- parent(X,liz).
X = tom;
no
| ?- halt.
2: orion%

