
1

Chapter 6

Data Types

2Chapter 6: Data Types

Topics
Introduction
Type Information

Data Type
n Specification of a Data Type

Primitive Data Types
n Numeric Data Types

Integers
Floating-Point Numbers
Fixed- Point Real Numbers

n Boolean Types
n Character Types

3Chapter 6: Data Types

Topics

Composite Data Types
Character Strings
User-Defined Ordinal Type
n Enumerations
n Subranges

Structure Types

4Chapter 6: Data Types

Topics

Vectors
Arrays
Slices
Associative Arrays
Records
Unions
Lists
Sets
Pointers

5Chapter 6: Data Types

Introduction

Every program uses data, either explicitly
or implicitly, to arrive at a result.
All programs specify a set of operations
that are to be applied to certain data in a
certain sequence.
Data in its most primitive forms inside a
computer is just a collection of bits.

6Chapter 6: Data Types

Introduction

Basic differences among languages exist
in the types of data allowed, in the types of
operations available, and in the
mechanism provided for controlling the
sequence in which the operations are
applied to the data.
Most programming languages provide a
set of simple data entities as well as
mechanism for constructing new data
entities from these.

2

7Chapter 6: Data Types

Type Information

Program data can be classified
according to their types.

Type information can be contained in a
program either implicitly or explicitly.

8Chapter 6: Data Types

Type Information: implicit

n Implicit type information includes the types of
constants and values, types that can be
inferred from a name convention, and types
can be inferred from context.

Example: number 2 is implicitly an integer in most
languages
Example: TRUE is Boolean
Example: variable I in FORTRAN is, in the
absence of other information, an integer variable.

9Chapter 6: Data Types

Type Information: explicit

n Explicit type information is primarily
contained in declarations.

Variables can be declared to be of specific
types.
Example: var x: array[1..10] of integer;

Example: var b: boolean;

10Chapter 6: Data Types

Data Type

A data type is a set of values that can be specified
in many ways:
n Explicitly listed
n Enumerated
n Given as a subrange of known values
n Borrowed from mathematics

A set of values also has a group of operations that
can be applied to the values.
n These operations are often not mentioned explicitly with

the type, but are part of its definition.

11Chapter 6: Data Types

Data Type: definition

A data type is a set of values, together
with a set of operations on those values
having certain properties.
Every language comes with a set of
predefined types from which all other
types are constructed.
n Provide facility to allow the programmer

defined new data types.

12Chapter 6: Data Types

Specification of a Data Type

Basic elements of a specification of a
data type:

1. The attributes that distinguish data objects
and types.

2. The values that data objects of that type
may have, and

3. The operations that defined the possible
manipulations of data objects of that type.

3

13Chapter 6: Data Types

Specification of a Data Type:
example

Specification of an array:
1. The attributes might include the number of

dimensions, the subscript range for each dimension,
and the data type of the components.

2. The values would be the sets of numbers that form
valid values for array components.

3. The operations would include subscripting to select
individual array components and possibly other
operations to create arrays, change their shape,
access attributes such as upper and lower bounds
of subscripts, and perform arithmetic on pair of
arrays.

14Chapter 6: Data Types

Primitive Data Types

Algol- like languages (Pascal, Algol68, C,
Modula-2, Ada, C++), all classify types
according to a basic scheme, with minor
variations.
n Names used are often different, even though the

concepts are the same.

Primitive types are also called base types or
scalar types or unstructured types or elementary
types.
A scalar type is a type whose elements consist
of indivisible entities (a single data value or
attribute).

15Chapter 6: Data Types

Numeric Data Types

Some form of numeric data is found in
almost every programming language.
n Integers

n Floating-Point Real Numbers
n Fixed-Point Real Numbers

16Chapter 6: Data Types

Integers: specification

The set of integer values defined for the
type forms an ordered subset, within some
finite bounds, of the infinite set of integers
studied in mathematics.
n The maximum integer value is sometimes

represented as a defined constant
Example: In Pascal, the constant maxint
The range of values is defined to be from –maxint
to maxint

n Some languages, such as C, have different
integer specifications: short, long

17Chapter 6: Data Types

Integers: specification

Operations on integer data objects include
the main groups:
n Arithmetic Operations:

Binary arithmetic operations such as addition (+),
subtraction (-), multiplication (*), division (/ or div),
remainder (mod).
BinOp: integer x integer à integer
Unary arithmetic operations such as negation (-) or
identity (+).
UnaryOp: integer à integer

18Chapter 6: Data Types

Integers: specification

n Relational Operations:
Includes equal, not equal , less-than, greater-than,
less-than-or-equal, and greater-than-or-equal .
RelOp: integer x integer à Boolean

n Assignment
assignment: integer x integer à integer

n Bit Operations
In some languages, integers fulfill many roles.
In C, integer also play the role of Boolean values.
C includes operations to and the bits together (&),
or the bits together (|), and shift the bits (<<).

4

19Chapter 6: Data Types

Integers: implementation

Implemented using hardware-defined
integer storage representation and set of
hardware possible storage
representations for integers.
Some possible storage representation
for integers.

20Chapter 6: Data Types

Integers: implementation

No descriptor
n Only the value is stored.
n Possible if the language provides

declarations and static type checking for
integer data objects.

Binary integer

Sign bit

21Chapter 6: Data Types

Integers: implementation
Descriptor separated
n Stores the description in a separate memory location,

with a pointer to the full -word integer value.
n Often used in LISP.
n Disadvantage: It may double the storage required.
n Advantage: because the value is stored using the build-

in hardware representation, the hardware arithmetic
operations may be used.

Type description

Binary integer

Sign bit

22Chapter 6: Data Types

Integers: implementation
Descriptor in the same word
n Descriptor and value are stored in a single memory

location by shortening the size of the integer sufficiently
to provide space for the descriptor.

Storage is conserved.
Hardware operations: clearing the descriptor from the integer
data object, perform the arithmetic, and then reinserting the
descriptor.
Arithmetic is inefficient.

Binary integer

Sign bitType descriptor

23Chapter 6: Data Types

Floating-Point Numbers:
specification

Sometimes called real, as in FORTRAN.
Also called float, as in C.
As with type integer, the values form an
ordered sequence from some hardware-
determined minimum negative value to a
maximum value, but the values are not
distributed evenly across this range.

24Chapter 6: Data Types

Floating-Point Numbers:
specification

Same arithmetic, relational, and assignment
operations as for integers.
n Boolean are sometimes restricted.

n Due to roundoff issues: equality between two
real numbers is rarely achieved.

Equality may be prohibited by the language designer.
n Most languages provide other operations as

build-in functions:
n Sine: Sin: real à real
n Maximum value : max: real x real à real

5

25Chapter 6: Data Types

Floating-Point Numbers:
implementation

Storage representation based on an
underlying hardware representation.
n Mantissa (i.e. the significant digits of the

number)
n Exponent

Exponent

Exponent sign bit

Sign bit

Mantissa

26Chapter 6: Data Types

Floating-Point Numbers:
implementation

This model emulates scientific notation
n Number N can be expressed as N=mx2k

n IEEE Standard 754
32 and 64 bit standard

n Numbers consist of 3 fields:
S : a one- bit sign field. 0 is positive
E: Values (8 bits) range from 0 to 355 corresponding to
exponents of 2 that ranges from –127 to 128
M: a mantissa of 23 bits. The first number is always 1 then it is
inserted automatically by the hardware yielding an extra 24th bit
of precision.

exponentS mantissa

27Chapter 6: Data Types

Floating-Point Numbers:
implementation

A double-precision form is available in
many programming languages.
n Additional memory word is used to store an

extended mantissa.

exponentS mantissa

8 bits 23 bits

exponentS mantissa

11 bits 52 bits

28Chapter 6: Data Types

Fixed-Point Real Numbers:
specification

A fixed-point number is represented as a
digit sequence of fixed length, with the
decimal point position at a given point
between two digits.
n Example: In COBOL:

X PICTURE 999V99
declares X as a fixed-point variable with 3
digits before the decimal and 2 digits after.

29Chapter 6: Data Types

Fixed-Point Real Numbers:
implementation

A fixed-point type may be directly
supported by the hardware or may be
simulated by software.
n Example: In PL/I, fixed data are of type Fixed

Decimal.
DECLARE X FIXED DECIMAL (10,3),

Y FIXED DECIMAL (10,2),
Z FIXED DECIMAL (10,2);

Data is stored as integers, with the decimal point
being an attribute of the data object.

30Chapter 6: Data Types

Fixed-Point Real Numbers:
implementation

n If X has the value 103.421, then r-value of X will be
103 421, and the object X will have an attribute scale
factor (SF) of three (the decimal point is 3 places to
the left).

n The statement Z = X + Y
Shift Y left one position (equivalent to multiplying the
integral r -value of Y by 10)
The sum will have 3 decimal digits (SF=3)
Because Z has only 2 decimal places (SF=2) and the sum
has 3, remove one place (divide by 10).

Subtraction and division are handled in an
analogous manner.

6

31Chapter 6: Data Types

Boolean Types: specification

Data objects having one of two values (true of
false).
The most common operations on Boolean types
include assignment and the following logical
operations:
n and: Boolean x Boolean à Boolean (conjunction)
n or: Boolean x Boolean à Boolean (inclusive

disjunction)
n not: Boolean à Boolean (negation or complement)

Other Boolean operations: equivalence,
exclusive or, implication, nand (not-and), and
nor (not-or).

32Chapter 6: Data Types

Boolean Types: implementation

Storage is a single bit providing no descriptor

Because single bits may not be separately
addressable in memory, its storage is extended to
be a single addressable unit such as a byte.

The values true and false might be represented in 2
ways within this storage unit:
n A particular bit is used for the value (often, the sign bit of

the number representation), with 0=false and 1=true , and
the rest of the byte is ignored.

n A zero value in the entire storage unit represents false,
and any other nonzero value represents true.

33Chapter 6: Data Types

Character Types: specification

The set of possible character values is
usually taken to be a language-defined
enumeration corresponding to the standard
character sets supported (I.e. ASCII).
Operations on character data include only
the relational operations, assignments, and
sometimes operations to test whether a
character is one of the special classes letter,
digit, or special character.

34Chapter 6: Data Types

Programming Language
Problem

Find the right mechanisms to allow the
programmer to create and manipulate object
appropriate to the problem at hand.
n Language design: simplicity, efficiency, generality,

etc.
A PL is strongly typed if all type checking can be
done at compile time.
A PL is type complete if all objects in the
language have equal status.
n In some languages objects of certain types are

restricted.

35Chapter 6: Data Types

Structured Types
A structured type is a compound type.
n Arrays, records, tuples, lists, sets, functions, etc.

n Two kinds of structured types:
Heterogeneous: elements of different types.
Homogeneous: elements of the same type.

homogeneous heterogeneous

static record

dynamic array

Dynamic selection à homogeneous à compiler will not

know which one will be selected at run time
36Chapter 6: Data Types

Composite Data Types

Usually considered elementary data
objects.
Their implementation usually involves a
complex data structure organization by the
compiler.
Multiple attributes are often given for each
data type.

7

37Chapter 6: Data Types

Character Strings

Data objects composed of a sequence of
characters.
It is important in most languages
n Used for data input and output.

Design Issues
n Should strings be a special kind of character

array or a primitive type (no array-style
subscripting operations)?

n Should string have static or dynamic length?

38Chapter 6: Data Types

Character Strings: specification
and syntax

At least 3 different treatments:
1. Fixed declared length.

Value assigned: a character string of a
certain length.
Assignment of a new string value results in a
length adjustment of the new string through
truncation of excess characters or addition
of blank characters to produce a string of the
corre4ct length.
Storage allocation is determined at
translation time.

39Chapter 6: Data Types

Character Strings: specification
and syntax

2. Variable length to a declared bound.
The string may have a maximum length that is declared
previously.
The actual value stored may be a string of shorter
length (even the empty string).
During execution, the length of the string value may
vary, but it is truncated if it exceeds the bound.
Storage allocation is determined at translation time.

3. Unbound length.
The string may have a string value of any length.
The length may vary dynamically during execution with
no bound (beyond available memory).
Dynamic storage allocation at run time. 40Chapter 6: Data Types

Character Strings: C

Strings are arrays of characters (no string
declaration).
Convention: null character (“\0”) follows
the last character of a string.
Every string, when stored in an array, will
have the null character appended by the C
translator.
n Programmers have to manually include the

final null character to strings made from
programmer-defined arrays.

41Chapter 6: Data Types

Character Strings: operations

A wide variety of operations are usually
provided.

1. Concatenation.
Operation of joining two strings to make one
long string
Example: if || is the symbol used for
concatenation, “BLOCK” || “HEAD” gives
“BLOCKHEAD”

42Chapter 6: Data Types

Character Strings: operations

2. Relational operations on strings.
n Usual relational operations (equal, less-than,

greater-than, etc) may be extended to strings.

n Lexicographic (alphabetic) order
Example: String A is less than String B if either
n The first character of A is less than the first character of

B
n If both characters are equal and the second character of

A is less than the second character of B, and so on.
n A shorter string is extended with blank character

(spaces) to the length of the longer.

8

43Chapter 6: Data Types

Character Strings: operations

3. Substring selection using positioning
subscripts.
n Some languages provide an operation for

selecting a substring by giving the position of
its first and last characters

Or first character position and length of the
substring.
Example: In Fortran: Next = STR(6:10)

n Some problem could arise if substring selection
appears on both sides of an assignment

Example: In Fortran, STR(!:5) = STR(I:I+4)

44Chapter 6: Data Types

Character Strings: operations

4. Input-output formatting.
n Formatting data for output.
n Breaking up formatted input data into smaller

data items.
5. Substring selection using pattern matching.

n Often the position of a desired substring within
a larger string is not know.

Its relation to other substrings is know.
Examples:
n A sequence of digits followed by a decimal point
n The word following the word THE.

45Chapter 6: Data Types

Character Strings: operations

n Patter matching operation takes two arguments:
A pattern data structure
n The pattern specifies the form of the substring desired and

possibly other substrings that should adjoin it.

n A string with a substring that matches the specified pattern.

The most common pattern matching mechanism are
regular expressions.
Some languages have pattern matching built into the
language (Perl, Python, Ruby, …).
Some languages implement pattern matching via external
libraries or classes
n Java has Pattern and Matcher classes

46Chapter 6: Data Types

Recursive Definition of a Regular
Expression

Individual terminals are regular
expressions
If a and b are regular expressions so are
n a | b choice

n ab sequence
n (a) grouping

n a* zero or more repetitions

Nothing else is a regular expression

47Chapter 6: Data Types

Examples

Identifiers
n letter(letter | digit)*

Binary strings
n (0 | 1)(0 | 1)*

Binary strings divisible by 2
n (0 | 1)*0

48Chapter 6: Data Types

Pattern Symbols

Case insensitive\i
Grouping ()
Choice|
Between i and j occurrences{i, j}
None of enclosed characters[̂ abc]
One of enclosed characters[abc]
0 or 1 occurrences of previous character?
1 or more occurrences+
0 or more occurrences*
Any single character (except '\n').
MeaningSymbol

9

49Chapter 6: Data Types

Character Classes

There are several classes of characters
that have special names

\S

\W

\D

Exclude

Any whitespace\s

Any letter,
digit, or
underscore

\w

Any digit\d

Match

50Chapter 6: Data Types

Anchors

Used to specify position within a string

\bpattern\b matches the word pattern but not
patterned

Not at word boundary\B
Word boundary\b

End of string$

Beginning of string^
PositionSymbol

51Chapter 6: Data Types

Character Strings:
implementation

Each of the 3 methods for handling
character string utilizes a different storage
representation.
Hardware support for the simple fixed-
length representation is usually available
but other representations for strings must
usually be software simulated.

52Chapter 6: Data Types

Storage Representation for
Strings

R E L A

T I V I

T Y

Fixed declared length

Strings stored 4
characters per word
padded with blanks

10 14 R E

L A T I

V I T Y

Variable length with bound

Current and maximum
string length stored
at header of string

53Chapter 6: Data Types

Storage Representation for
Strings

10 R E L

A T I V

I T Y

Unbounded with fixed allocations
Strings stored at 4
characters per block.
Length at header of
string

R E L A T I V I T Y

Unbounded with variable allocations

String stored as contiguous
Array of characters.
Terminated by null character

54Chapter 6: Data Types

Strings: evaluation

String types are important to writability and
readability.
Not costly (language or compiler
complexity): add strings as a primitive
type.
n Standard libraries is as convenient as using

strings as primitive types.

10

55Chapter 6: Data Types

User-Defined Ordinal Type

Ordinal type: the range of possible values
can be easily associated with the set of
positive integers.
n Enumerations

n Subrange

56Chapter 6: Data Types

Enumerations

A variable can take only one of a small number of
symbolic values.
n Example: a variable StudentClass might have only four

possible values representing freshman, sophomore, junior,
and senior.

n Example: a variable EmployeeSex might have only two
values representing male and female.

n In older languages (Fortran, Cobol), an enumeration
variable is given the data type integer.

The values are represented as distinct, arbitrary chosen integers.
Example: Freshman = 1, Sophomore = 2 , and so on.
Example: Male = 0, Female = 1

57Chapter 6: Data Types

Enumerations: specification

Modern languages include an enumeration data
type.
An enumeration is an ordered list of distinct
values.

The programmer defines both the literal names
to be used for the values and their ordering
using a declaration.
n Example: In C,

enum StudentClass {Fresh, Soph, Junior, Senior};
enum EmployeeSex {Male, Female};

58Chapter 6: Data Types

Enumerations: specification

Ordinarily many variables of the same
enumeration type are used in a program.
Define the enumeration in a separate type
definition
n In Pascal: type Class = {Fresh, Soph, Junior, Senior};

followed by declarations for variables:
StudentClass: Class; TransferStudent: Class;

n The type definition introduces the type name
Class, which may be used as a primitive.

59Chapter 6: Data Types

Enumerations: specification

n It also introduces the literals of Fresh, Soph,
Junior, and Senior which may be used instead
of the corresponding integers.

Example: if StudentClass = Junior then …
instead of the less undertandable

if StudentClass = 3 then …

Static type checking by the compiler could
find programming errors.
n Example: if StudentClass = Male then …

60Chapter 6: Data Types

Enumerations: operations

Basic operations
n Relational operations (equal, less-than, etc)

Defined for enumerations types because the set of
values is given an ordering in the type definition.

n Assignment

n Successor and predecessor
Gives the next and previous value, respectively, in
the sequence of literals defining the enumeration.
Undefined for the last and first values, respectively

11

61Chapter 6: Data Types

Enumerations: implementation

Storage representation is straightforward
n Each value in the enumeration sequence is

represented at run time by one of the integer 0,
1, ….

n Only a small set is involved and the values are
never negative.

n The usual integer representation is often
shortened to omit the sign bit and use only
enough bits for the range of values required.

62Chapter 6: Data Types

Enumerations: implementation

Example: The previous type Class has only four
possible values 0 = Fresh, 1 = Soph, 2 = Junior, and 3 =
Senior.

Only 2 bits are required to represent these 4
possible values in memory.
Successor & predecessor: add or subtracts one
form the integer representing the value and check
if the result is within the proper range.

n In C, the programmer may override this
default and set any values desired.

Example:
enum class {Fresh=14, Soph=36, Junior=4, Senior=42};

63Chapter 6: Data Types

Enumerations: evaluation

Provides advantages in
n Readability

Named values are easily recognized.
n Reliability

In languages such as C#, Ada, Java there are two
advantages:
n No arithmetic operations are legal on enumeration types.
n No enumeration variable can be assigned a value

outside its defined range.

In C there are no advantages (treats enumerations
as integers).

64Chapter 6: Data Types

Subrange Types: specification

A subrange is a contiguous sequence of
an ordinal type within some restricted
range.
n Example: In Pascal, A: 1..10

In Ada, A: integer range 1..10

A subrange type allows the same set of
operations to be used as for the
corresponding ordinal type.

65Chapter 6: Data Types

Subrange Types:
implementation

Two important effects on implementations:
1. Smaller storage requirements.

Because a smaller range of values is possible, a
subrange value can usually be stored in fewer bits
than a general integer value.
n Example: the subrange 1..10 requires only 4 bits whereas

a full integer requires 16 or 32.
n Because arithmetic operations on shortened integers may

need software simulation for their execution (slower),
subranges values are often represented as the smallest
number of bits for which the hardware implements
arithmetic operations (generally 8 or 16).

66Chapter 6: Data Types

Subrange Types:
implementation

2. Better type checking.
More precise type checking to be performed on the
values assigned to the variable.
Example: if variable Month is Month: 1..12, then the
assignment Month := 0 is invalid and can be detected
at compile time. If Month is declared to be of integer
type, then the assignment is valid and the error
must be found by the programmer during testing.
Some subrange type checks cannot be performed
at compile time, i.e in Month := Month + 1 run time
checking is needed to determine whether the new
value is within the bounds declared.

12

67Chapter 6: Data Types

Subrange Types: evaluation

Enhance readability by showing clearly
that variables of subtypes can store only
certain ranges of values.
Increase reliability because possible
values that are outside of a range can be
detected faster and easier.
No contemporary language except Ada95
has subrange types.

68Chapter 6: Data Types

Structured Types

A structured type is a compound type that
contains other data objects as its elements
or components.
n Arrays
n Records
n Tuples
n Lists
n Sets
n Functions
n Stacks

69Chapter 6: Data Types

Structure Types: specification

The major attributes for specifying
structure types include:

1. Number of components
n Fixed size: the number of components is

invariant during its lifetime.
Arrays and records.

n Variable size: the number of components
changes dynamically.

Usually define operations that insert and delete
components.
Stacks, lists, sets, tables, and files.

70Chapter 6: Data Types

Structure Types: specification

2. Type of each component
n Two kinds of structured types:

Heterogeneous: elements of different types.
Homogeneous: elements of the same type.

homogeneous heterogeneous

static record, list

dynamic array, set, file

Dynamic selection à homogeneous à compiler will not
know which one will be selected at run time

71Chapter 6: Data Types

Structure Types: specification

3. Names to be used for selecting
components.
n Needs a selection mechanism for identifying

individual components of the data structure
Array: name of an individual component may be an integer
subscript or sequence of subscripts.
Table: the name may be a programmer-defined identifier.
Record: name is usually a programmer -defined identifier.
Some data structures (stacks and files) allow access to only a
particular component (top or current component) at any time.

72Chapter 6: Data Types

Structure Types: specification

4. Maximum number of components.
For variable-size data structures, a maximum size for
the structure in terms of number of components may be
specified.

5. Organization of the components.
n The most common organization is a simple linear

sequence of components.
Vectors (one- dimensional arrays), records, stacks, lists, and
files.
Array, record, and list types are usually extended to
multidimensional forms: multidimensional arrays, records
whose components are records, lists whose components are
lists.

13

73Chapter 6: Data Types

Structure Types: operations

1. Component selection operations.
Processing data often proceeds by
retrieving each component of the structure.

Two types of selection operations :
Random selection : an arbitrary component of
the data structure is accessed.
Sequential selection: components are selected
in a predetermined order.

74Chapter 6: Data Types

Structure Types: operations

2. Whole-data structure operations.
Operations may take entire data structures
as arguments and produce new data
structures as results.

Most languages provide a limited set.
Addition of two arrays.
Assignment of one record to another.
Union operation on sets.

75Chapter 6: Data Types

Structure Types: operations

3. Insertion/deletion of components.
Operations that change the number of
components in a data structure.

4. Creation/destruction of data structures
Operations that create and destroy data
structures.

76Chapter 6: Data Types

Structure Types:
implementation

The storage representation includes (1)
storage for the components of the
structure, and (2) an optional descriptor
that store some or all of the attributes of
the structure.
There are two basic representations:
n Sequential

n Linked

77Chapter 6: Data Types

Structure Types:
implementation

1. Sequential representation.
The data structure is stored in a single
contiguous block of storage that includes
both descriptor and components.

Component

Component

.

.

.

Component

78Chapter 6: Data Types

Structure Types:
implementation

2. Linked representation.
The data structure is stored in several non-
contiguous blocks of storage, with the blocks
linked together through pointers.

Descriptor

Component

Component…

14

79Chapter 6: Data Types

Structure Types:
implementation

Sequential representations are used for
fixed-size structures and sometimes for
homogeneous variable-size structures
such as character strings or stacks.
Linked representations are commonly
used for variable-sized structures such
as lists.

80Chapter 6: Data Types

Vectors and Arrays

Vectors and arrays are the most common types
of data structures in programming languages.
A vector is a data structure composed of a fixed
number of components of the same type
organized as a simple linear sequence.
A component of a vector is selected by giving its
subscript, an integer (or enumeration value)
indicating the position of the component in the
sequence.
A vector is also called a one-dimensional array
or linear array.

81Chapter 6: Data Types

Vectors

The attributes of a vector are:
1. Number of components : usually indicated

implicitly by giving a sequence of subscript
ranges, one for each dimension.

2. Data type of each component, which is a
single data type, because the components
are all of the same type.

3. Subscript to be used to select each
component: usually given as a range of
integers, with the first integer designating
the first component, and so on.

82Chapter 6: Data Types

Vectors: subscripts

Subscripts may be either a range of values
as -5...5 or an upper bound with an implied
lower bound, as A(10).
Examples:
n In Pascal, V: array [-5 .. 5] of real;

Defines a vector of 11 components, each a real number, where
the components are selected by the subscripts, - 5, - 4, … 5.

n In C, float a[10];
Defines a vector of 10 components with subscripts ranging from
0 to 9.

83Chapter 6: Data Types

Vectors: subscripts

Subscript ranges need not begin at 1.

Subscript ranges need not even be a subrange
of integers; it may be any enumeration (or a
subsequence of an enumeration)

Example:
n In Pascal, type class = (Fresh, Soph, Junior, Senior);

var ClassAverage: array [class] of real;

84Chapter 6: Data Types

Vectors: operations

Subscripting: the operation that selects a
component from a vector.
n It is usually written as the vector name

followed by the subscript of the component to
be selected.

V[2] or ClassAverage[Soph]

n It may be a computed value (an expression
that computes the subscript)

V[I + 2]

15

85Chapter 6: Data Types

Vectors: other operations

Operations to create and destroy vectors.
Assignment to components of a vector.
Operations that perform arithmetic
operations on pairs of vectors of the same
size (i.e. addition of two vectors).
Insertions and deletions of components
are not allowed
n Only the value of a component may be

modified.

86Chapter 6: Data Types

Vectors: implementation

Storage and accessing of individual
components are straightforward:
n Homogeneity of components

The size and structure of each component is the
same.

n Fixed size
The number and position of each component of a
vector are invariant through its lifetime.

A sequential storage is appropriate.

87Chapter 6: Data Types

Vectors: implementation

Vector
LB
UB

Integer
E

Data type
Lower subscript bound
Upper subscript bound
Data type of component
Size of component
A[LB]
A[LB+1]

A[UB]

Descriptor

Storage
representation

88Chapter 6: Data Types

Vectors: access function

An access function is used to map array
subscripts to addresses.
can be addressed by skipping I-1
components.
n If E is the size of each component, then skip

(I-1) x E memory locations.
n If LB is the lower bound on the subscript

range, then the number of such components
to skip is I-LB or (I-LB) x E memory locations.

89Chapter 6: Data Types

Vectors: access function

n If the first element of the vector begins at location α,
the access function is:

address(A[I]) = α + (I – LB) x E

which can be rewritten as:
address(A[I]) = (α – LB x E) + (I x E)

n Once the storage for the vector is allocated, (α – LB x E)
is a constant (K) and the accessing formula reduces
to

address(A[I]) = K + I x E

n Example: access function of a C vector
address(A[I]) = address(array[0]) + i*element_size

90Chapter 6: Data Types

Multidimensional Arrays

An array is a homogeneous collection of data
elements in which an element is identified by its
position in the collection, relative to the first
element
Indexing is a mapping from indices to elements
map(array_name, index_value_list) → an element
Indexes are also known as subscripts .
Index Syntax
n FORTRAN, PL/I, Ada use parentheses
n Most other languages use brackets

16

91Chapter 6: Data Types

Arrays: subscript types

What type(s) are allowed for defining array
subscripts?
n FORTRAN, C, C++, and Java allow integer

subscripts only.

n Pascal allows any ordinal type
int, boolean, char, enum

n Ada allows integer or enumeration types
Including boolean and char

92Chapter 6: Data Types

Arrays: subscript issues

In some languages the lower bound of the
subscript range is implicit
n C, C++, Java—fixed at 0

n FORTRAN—fixed at 1
n VB (0 by default, could be configured to 1)

Other languages require programmer to
specify the subscript range.

93Chapter 6: Data Types

Arrays: 4 categories

There are 4 categories of arrays based on
subscript range bindings and storage
binding:
n Static

n Fixed stack-dynamic
n Stack dynamic

n Heap-dynamic

94Chapter 6: Data Types

Static Arrays

Static arrays are those in which
n Range of subscripts is statically bound (at compile

time).
n Storage bindings are static (initial program load time)

Examples:
n FORTRAN77, global arrays in C, static arrays

(C/C++), some arrays in Ada.
Advantage:
n Execution efficiency since no dynamically

allocation/deallocation is required
Disadvantages:
n Size must be known at compile time.
n Bindings are fixed for entire program.

95Chapter 6: Data Types

Fixed stack dynamic Arrays

Fixed stack-dynamic arrays are those in which
n Subscript ranges are statically bound.
n Allocation is done at declaration elaboration time (on

the stack).
Examples:
n Pascal locals, most Java locals, and C locals that are

not static.
Advantage is space efficiency
n Storage is allocated only while block in which array is

declared is active.
n Using stack memory means the space can be reused

when array lifetime ends.
Disadvantage
n Size must be known at compile time. 96Chapter 6: Data Types

Stack dynamic Arrays

A stack-dynamic array is one in which
n Subscript ranges are dynamically bound
n Storage allocation is done at runtime
n Both remain fixed during the lifetime of the variable

Advantage: flexibility - size need not be known until the
array is about to be used
Disadvantge: once created, array size is fixed.
Example:
n Ada arrays can be stack dynamic:

Get(List_Len);
Declare
List : array (1..List_Len) of Integer;

Begin
…
End;

17

97Chapter 6: Data Types

Heap dynamic Arrays

Storage is allocated on the heap
A heap-dynamic array is one in which
n Subscript range binding is dynamic
n Storage allocation is dynamic

Examples:
n In APL, Perl and JavaScript, arrays grow and shrink

as needed
n C and C++ allow heap-dynamic arrays using pointers
n In Java, all arrays are objects (heap dynamic)
n C# provides both heap-dynamic and fixed-heap

dynamic

98Chapter 6: Data Types

Summary: Array Bindings

Binding times for Array

Runtime Runtime Dynamic

Runtime but fixed
thereafter

Runtime but fixed
thereafter

Stack dynamic

Declaration elaboration
time

Compile timeFixed stack dynamic

Compile timeCompile timeStatic

StorageSubscript range

99Chapter 6: Data Types

Arrays: attributes

Number of scripts
n FORTRAN I allowed up to three
n FORTRAN 77 allows up to seven
n Others languages have no limits.
n Other languages allow just one, but elements

themselves can be arrays.

Array Initialization
n Usually just a list of values that are put in the array in

the order in which the array elements are stored in
memory

100Chapter 6: Data Types

Arrays: initialization

Examples of array initialization:
1. FORTRAN - uses the DATA statement, or put the

values in / ... / on the declaration
Integer, Dimension (4) :: stuff = (/2, 4, 6, 8/)

2. Java, C and C++ - put the values in braces; can let
the compiler count them
e.g.
int stuff [] = {2, 4, 6, 8};

3. For strings (which are treated as arrays in C and
C++), an alternate form of initialization is provided.
char* names[] = {"Bob", "Mary", "Joe"};

101Chapter 6: Data Types

Arrays: initialization

3. Ada provides two mechanisms

- List in the order in which they are stored.
- Positions for the values can be specified.
stuff : array (1..4) of Integer := (2,4,6,8);
SCORE : array (1..14, 1..2) of Integer := (1 => (24,
10), 2 => (10, 7), 3 =>(12, 30), others => (0, 0));

4. Pascal does not allow array initialization

102Chapter 6: Data Types

Arrays: implementation

A matrix is implemented by considering it
as a vector of vectors; a three-dimensional
arrays is a vector whose elements are
vectors, and so on.
n All subvectors must have the same number of

elements of the same type.

Matrix:
n Column of rows vs. row of columns

18

103Chapter 6: Data Types

Arrays: implementation

Row-major order (column of rows)
n The array is first divided into a vector of

subvectors for each element in the range of
the first subscript, then each of these
subvectors is subdivided into subvectors for
each element in the range of the second
subscript, and so on.

Column-major order (single row of
columns)

104Chapter 6: Data Types

Arrays: Row- vs. Column-major
order

105Chapter 6: Data Types

Arrays: storage representation

Storage representation follows directly
from that for a vector.
n For a matrix, the data objects in the first row

(assuming row -major order) followed by the
data objects in the second row, and so on.

n Result: a single sequential block of memory
containing all the components of the array in
sequence.

The descriptor is the same as that for the vector,
except that an upper and lower bound for the
subscript range of each dimension are needed.

106Chapter 6: Data Types

Arrays: implementation
VO

LB 1 (= 1)
UB 1 (= 3)
LB 2 (= -1)

UB 2 (= 1)

Virtual Origin
Lower bound on subscript 1
Upper bound on subscript 1
Lower bound on subscript 2
Upper bound on subscript 2
Size of component

M[1,-1]

Descriptor

Storage
representation

E (= 1)

M[1,0]
M[1,1]
M[2,-1]
M[2,0]
M[2,1]
M[3,-1]
M[3,0]
M[3,1]

First row

Second row

Third row

107Chapter 6: Data Types

Arrays: accessing function

The accessing function is similar to that for
vectors:
n Determine the number of rows to skip over

(I-LB1)

n Multiply by the length of a row to get the
location of the start of the Ith row

n Find the location of the Jth component in that
row, as for a vector

108Chapter 6: Data Types

Arrays: accessing function

If A is a matrix with M rows and N columns, the
location of element A[I,J] is given by:
n A is stored in row-major order

location(A[I,J]) = α + (I - LB1) x S + (J - LB2) x E
where S = length of a row = (UB2 - LB2 + 1) x E

n A is stored in column-major order

location(A[I,J]) = α + (J - LB2) x S + (I - LB1) x E
where S = length of a row = (UB1 - LB1 + 1) x E

where α = base address
LB1 = lower bound on first subscript
LB2, UB2 = lower and upper bounds on the second subscript

19

109Chapter 6: Data Types

Arrays: Row-major access
function

location(A[I,J]) = α + (I - LB1) x S + (J - LB2) x E
S = (UB2 - LB2 + 1) x E

110Chapter 6: Data Types

Arrays: Column-major access
function

location(A[I,J]) = α + (J - LB2) x S + (I - LB1) x E
S = length of a row = (UB1 - LB1 + 1) x E

111Chapter 6: Data Types

Slices
A slice is some substructure of an array
n Nothing more than a referencing

mechanism
n A way of designating a part of the array

Slices are only useful in languages for
operations that can be done on a whole
array.

1. In FORTRAN 90
INTEGER MAT (1:4, 1:4)
MAT(1:4, 1) - the first column
MAT(2, 1:4) - the second row

112Chapter 6: Data Types

Example Slices in FORTRAN 90

113Chapter 6: Data Types

Slices: examples

2. Ada - single-dimensioned arrays only
LIST(4..10)

3. Java has something like slices for multi-
dimensioned arrays

int [][]array = array[1] - gets the second row

PL/I was one of the earliest languages to
implement slices.

114Chapter 6: Data Types

Associative Arrays

An associative array is an unordered
collection of data elements that are
indexed by an equal number of values
called keys
The keys are stored in the structure
Thus, element is a (key, value) pair
Design Issues:
1. What is the form of references to elements?
2. Is the size static or dynamic?

20

115Chapter 6: Data Types

Associative Arrays

Structure and Operations in Perl
n Names begin with %
%hi_temps = ("Monday" => 77,

"Tuesday" => 79,
"Wednesday" => 83);

n Alternative notation
%hi_temps = ("Monday", 77,

"Tuesday", 79,
"Wednesday", 83);

116Chapter 6: Data Types

Associative Arrays

Structure and Operations in Perl
n Subscripting is done using braces and keys
$hi_temps{"Wednesday"};
#returns the value 83
n A new elements is added by
$hi_temps{"Thursday"} = 91;
n Elements can be removed with delete
delete $hi_temps{"Thursday"};

117Chapter 6: Data Types

Records

A data structure composed of a fixed
number of components of different types.
Vectors vs. Records

1. The components of records may be
heterogeneous , of mixed data types, rather
than homogeneous.

2. The components of records are named with
symbolic names (identifiers) rather than
indexed with subscripts.

118Chapter 6: Data Types

Records: attributes

Records have 3 main attributes:
1. The number of components
2. The data type of each component
3. The selector used to name each component

n The components of a records are often
called fields , and the component names
then are field names .

n Records are sometimes called structures (as
in C).

119Chapter 6: Data Types

Records: definition syntax

1. COBOL uses level numbers to show
nested records

01 EMPLOYEE-RECORD
02 EMPLOYEE-NAME

05 FIRST PICTURE IS X(20).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99

120Chapter 6: Data Types

Records: definition syntax

2. Other languages use recursive definitions
type Employee_Name_Type is record

First : String(1..20);
Middle: String (1..10);
Last : String (1..20);

end record;
type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;
Hourly_Rate: Float;

end record;
Employee_record: Employee_Record_Type;

21

121Chapter 6: Data Types

Record Field References

1. COBOL
field_name OF record_name_1 OF ... OF record_name_n

Example:

MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE-RECORD

2. Others (dot notation)
record_name_1.record_name_2. ... record_name_n.field_name

Example:

Employee_Record.Employee_Name.Middle

122Chapter 6: Data Types

Records

Fully qualified references must include all
record names
Elliptical references allow leaving out
record names as long as the reference is
unambiguous (Cobol only)
Pascal and Modula-2 provide a with
clause to abbreviate references

123Chapter 6: Data Types

Records: operations

Assignment
n Pascal, Ada, and C++ allow it if the types are

identical.
Initialization
n Allowed in Ada, using an aggregate.

Comparison
n In Ada, = and /=; one operand can be an aggregate

Move Corresponding
n In COBOL: it moves all fields in the source record to

fields with the same names in the destination record.

124Chapter 6: Data Types

Records: initialization

Define & initialize with
list of variables

Define & initialize
using the dot operator
(structure member
operator)

struct student s1 =
{"Ted","Tanaka",
22, 2.22};

struct student s2;
strcpy(s.first,

"Sally");
s.last="Suzuki";
s.age = 33;
s.gpa = 3.33;

125Chapter 6: Data Types

Records: implementation

The storage representation for a record
consists of a single sequential block of
memory in which the components are
stored in sequence.
Individual components may need
descriptors to indicate their data type and
other attributes.
n No runtime descriptor for the record is

required.

126Chapter 6: Data Types

Records: descriptors

22

127Chapter 6: Data Types

Unions

A union is a type whose variables are
allowed to store different type values at
different times during execution
Design Issues for unions:
1. What kind of type checking, if any, must be

done?
2. Should unions be integrated with records?

128Chapter 6: Data Types

Unions: examples
1. FORTRAN - with EQUIVALENCE

EQUIVALENCE (A, B, C, D), (X(1), Y(1))

n Free Unions:
No tag variable is required.
No type checking
C/C++ have free unions

2. Pascal: variant records
Contain one or more components that are common
to all variants.
Each variant has several other components with
names and data types that are unique to each
variant.

129Chapter 6: Data Types

Unions: examples
type PayType = (Salaried, Hourly);
var Employee: record

ID: integer;
Dept: array [1..3] of char;
Age: integer;
case PayClass: PayType of

Salaried: (MontlyRate: real;
StartDate: integer):

Hourly: (HourRate: real;
Reg: integer;
Overtime: integer)

end

The component PayClass is called the tag (Pascal) or discriminant
(Ada) because it serves to indicate which variant of the record exists
at a given point during program execution.

130Chapter 6: Data Types

Unions: type checking issues

System must check value of flag before each
variable access

Employee. PayClass := Salaried;
Employee. MontlyRate := 1973.30;
…
print(Employee.Overtime); -- error

Still not good enough!
Employee. PayClass := Salaried;
Employee. MontlyRate := 1973.30;
Employee. StartDate := 626;

Employee. PayClass := Hourly;
print(Employee.Overtime); -- this should be an error

131Chapter 6: Data Types

Unions: selection operation

Selection operation: same as that for an
ordinary record.
n For ordinary records: each component exists

throughout the lifetime of the record.
n For variant records/unions: the component

may exist at one point during execution (when
the tag component has a particular value),
may later cease of exist (when the value of
the tag changes to indicate a different
variant), and later may reappear (if the tag
changes back to its original value).

132Chapter 6: Data Types

Ada Union Types

Similar to Pascal, except
n No free union

Tag must be specified with union declaration
n When tag is changed, all appropriate fileds

must be set too.
Employee.PayClass := Hourly;
Employee.HourRate := 8.75;
Employee. Reg := 8;
Employee.Overtime := 2;

n Ada union types are safe
Ada systems required to check the tag of all
references to variants.

23

133Chapter 6: Data Types

Unions: type checking

Problem with Pascal’s design
n Type checking is ineffective.
n User can create inconsistent unions (because the tag

can be individually assigned)
n Also, the tag is optional (free union).

Ada discriminant union
n Tag must be present
n All assignments to the union must include the tag

value –tag cannot be assigned by itself.
n It is impossible for the user to create an inconsistent

union.
134Chapter 6: Data Types

Unions: implementation

During translation, the amount of storage
required for the components of each variant is
determined
n Storage is allocated in the record for the largest

possible variant.
n Each variant describes a different layout for the block

in terms of number and types of components.
During execution, no special descriptor is
needed for a variant record because the tag
component is considered just another
component of the record.

135Chapter 6: Data Types

Unions: storage representation

ID

Dept

Age

PayClass

MontlyRate

StartDate

HourRate

Reg

Overtime

Storage if
PayClass = Salaried

Storage if
PayClass = Hourly

136Chapter 6: Data Types

Unions: storage representation

137Chapter 6: Data Types

Union: evaluation

Useful
Potentially unsafe in most languages
Ada, Algol 68 provide safe versions

138Chapter 6: Data Types

Pointers
A pointer type is a type in which the range of
values consists of memory addresses and a
special value (nil, or null)
Pointers are useful for
n Addressing flexibility
n Dynamic storage management

Pointer operations
n Assignment of an address to a pointer

int *p, x = 5;
p = &x;

n Dereferencing
*p = 12;

24

139Chapter 6: Data Types

Pointers

The assignment operation j = *ptr
140Chapter 6: Data Types

Pointers: problems

1. Dangling pointers (dangerous)
n A pointer points to a heap-dynamic variable

that has been deallocated
n Creating one (with explicit deallocation):

a. Allocate a heap-dynamic variable and set
a pointer to point at it
b. Set a second pointer to the value of the

first pointer
c. Deallocate the heap-dynamic variable,

using the first pointer

141Chapter 6: Data Types

Pointers: problems

n Dangling pointers
int *p, *q;
p = (int*)malloc(sizeof(int* 5);
q = p;
free (p);

2. Lost Heap-Dynamic Variables (wasteful)
n A heap-dynamic variable that is no longer

referenced by any program pointer
n Creating one:

a. Pointer p1 is set to point to a newly created
heap-dynamic variable

142Chapter 6: Data Types

Pointers: problems

b. p1 is later set to point to another newly created heap-
dynamic variable

n The process of losing heap-dynamic variables is
called memory leakage

n Lost heap-dynamic variables (garbage)
p = (int*)malloc(5*sizeof(int));
p = new int(20);

The process of losing heap-dynamic variables is
called memory leakage . (cannot free the first chunk
of memory)

143Chapter 6: Data Types

Pointers: examples

C and C++ pointers
n Used for dynamic storage management and

addressing
n Explicit dereferencing (*) and address-of operator (&)
n Can do pointer arithmetic

float arr[100];
float *p = arr;
*(p+5) ≡ arr[5] ≡ p[5]
*(p+i) ≡ arr[i] ≡ p[i]

n void* can point to any data type but cannot be
dereferenced

144Chapter 6: Data Types

Pointers: examples

C++ reference types
n Constant pointers that are implicitly

dereferenced:
float x = 1.0;
float &y = x;
y = 2.2; à sets x to 2.2

n Used for reference parameters:
Advantages of both pass-by-reference and pass-
by-value

25

145Chapter 6: Data Types

Pointers: examples

Java - Only references (no pointers)
n No pointer arithmetic
n Can only point at objects (which are all on the

heap)
n No explicit deallocator (garbage collection is

used)

n Means there can be no dangling references
n Dereferencing is always implicit

146Chapter 6: Data Types

Lists
A data structure composed of an ordered
sequence of data structures.
List are similar to vectors in that they consist of an
ordered sequence of objects.
Lists vs. Vectors

1. Lists are rarely of fixed length. Lists are often used to
represent arbitrary data structures, and typically lists
grow and shrink during program execution.

2. Lists are rarely homogeneous. The data type of each
member of a list may differ from its neighbour.

3. Languages that use lists typically declares such data
implicitly without explicit attributes for list members.

147Chapter 6: Data Types

Variations on Lists

Stacks and queues
n A stack is a list in which component selection,

insertion, and deletion are restricted to one
end.

n A queue is a list in which component selection
and deletion are restricted to one end and
insertion is restricted to the other end.

n Both sequential and linked storage
representations for stacks and queues are
common.

148Chapter 6: Data Types

Variations on Lists

Trees
n A list in which the components may be lists as

well as elementary data objects, provided that
each list is only a component of at most one
other list.

Directed graphs
n A data structure in which the components

may be linked together using arbitrary linkage
patterns (rather than just linear sequences of
components).

149Chapter 6: Data Types

Variations on Lists

Property lists
n A record with a varying number of

components, if the number of components
may vary without restriction

n The component names (property names) and
their values (property values) must be stored.

n A common representation is an ordinary
linked list with the property names and their
values alternating in a single long sequence.

150Chapter 6: Data Types

Sets

A set is a data object containing an
unordered collection of distinct values.
Basic operations on sets:

1. Membership.

2. Insertion and deletion of single values.
3. Union of sets

4. Intersection of sets
5. Difference of sets

26

151Chapter 6: Data Types

Programming Language
Problem

Find the right mechanisms to allow the
programmer to create and manipulate object
appropriate to the problem at hand.
n Language design: simplicity, efficiency, generality,

etc.
A PL is strongly typed if all type checking can be
done at compile time.
A PL is type complete if all objects in the
language have equal status.
n In some languages objects of certain types are

restricted.

