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Imperative Paradigm

The most widely used and well-developed 
programming paradigm.
Emerged alongside the first computers and 
computer programs in the 1940s.

Its elements directly mirror the architectural 
characteristics of most modern computers
This chapter discusses the key programming 
language features that support the imperative 
paradigm.
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Von Neumann Architecture

The architecture of the von Neumann 
machine has a memory, which 
contains both program instructions and 
data values, and a processor, which 
provides operations for modifying the 
contents of the memory. 
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Von Neumann Architecture
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Programming Language: Turing 
Complete

Turing complete: contains integer variables, 
values, and operations, assignment 
statements and the control, constructs of 
statement sequencing, conditionals, and 
branching statements.
n Other statement forms (while and for loops, case 

selections, procedure declarations and calls, etc) 
and data types (strings, floating point values, etc) 
are provided in modern languages only to 
enhance the ease of programming various 
complex applications. 
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Imperative Programming 
Language

Turing complete
Also supports a number of additional 
fundamental features:
n Data types for real numbers, characters, strings, 

Booleans and their operands.
n Control structures, for and while loops, case (switch) 

statements.
n Arrays and element assignment.
n Record structures and element assignment.
n Input and output commands.
n Pointers.
n Procedure and functions.
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Variables

A variable is an abstraction of a memory 
cell or collection of cells.
n Integer variables are very close to the 

characteristics of the memory cells: 
represented as an individual hardware 
memory word.

n A 3-D array is less related to the organization 
of the hardware memory: a software mapping 
is needed.
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Variables: attributes

A variable can be thought of as being 
completely specified by its 6 basic 
attributes (6-tuple of attributes).

1. Name: identifier
2. Address: memory location(s)
3. Value: particular value at a moment
4. Type: range of possible values
5. Lifetime: when the variable is accessible
6. Scope: where in the program it can be 

accessed
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Names

Names have broader use than simple for 
variables. 
Names or identifiers are used to denote 
language entities or constructs. 
n In most languages, variables, procedures and 

constants can have names assigned by the 
programmer. 

Not all variables have names: 
n Can have a nameless (anonymous) memory 

cells.
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Names

We discuss all user-defined names here.
There are some clear design issues to 
consider:
n Maximum length?

n Notation?
n Are names case sensitive?

n Are special words reserved words or 
keywords?
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Names: length

If too short, they may not convey the meaning of 
the variable.
It too long, the symbol table of the compiler might 
become too large.

Language examples:
n FORTAN I: maximum 6
n COBOL: maximum 30
n FORTAN 90 and ANSI C: maximum 31
n Ada and Java: no limit and all are significant
n C++: no limit, but implementers often impose one
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Names: notation

Variables can consist of one or more 
letters, numbers (as long as a number is 
not the first character), and an underscore 
character (the underline key.)

<ident> ::- <letter> { <letter> | <digit> | ’_’ }

Some old languages allowed embedded 
spaces which were ignored
n FORTRAN 90: 

Sum Of Salaries vs. SumOfSalaries
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Names: “standard” notation

Some standards can be applied to how 
variables are named when one word is 
used to describe a variable.
Camel notation
n Uses capital letters to indicate the break 

between words.
n Camel is named such because the capital 

letters separating the words look like little 
camel humps

n Example: CostOfItemAtSale
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Names: “standard” notation

Underscore notation
n Uses an underscore to separate words that 

make up a variable.

n Example: Cost_of_item_at_sale

Some other standards are used to identify 
the data type stored in the variable
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Names: “standard” notation

Hungarian notation
n Uses two letters, both lower-case

First letter indicates the scope of the variable
Second letter indicates the type of the variable

n Example: l_fCostOfItemAtSale

Prefix notation
n Uses a prefix (usually three letters) to indicate 

the type of variable.
n Example: floCostOtItemAtSale
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Variable name Explanation

I This is a really bad variable to use. You can't tell what it contains and if anyone wants to fix 
it later, a simple search and replace will be very tedious since single letters are used in 
words as well.

lastname This is much better but uses no form of notation.

LastName This is camel notation

strLastName This is prefix – camel notation. Note that the prefix is in all lower case.

last_name This is underscore notation. As with camel notation, you can easily identify the two words 
that make up the variable name

str _last_name This is prefix underscore notation. Again, the prefix is in lower case.

lcLastName This is Hungarian camel notation. The first two letters tell us what type of variable is 
used. In this case, this variable contains a last name, is local to the function/procedure, 
and is a character string.

lc _last_name This is Hungarian underscore notation. 
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Names: case sensitivity

FOO = Foo = foo ?
Disadvantage:

Poor readability, since names that look alike 
to a human are different 

Worse in some languages such as Modula-2, 
C++ and Java because predefined names are 
mixed case

IndexOutOfBoundsException
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Names: case sensitivity

Advantages:
Larger namespace
Ability to use case to signify classes of 
variables (e.g. make constants be in upper-
case)

C, C++, Java, and Modula-2 names are case 
sensitive but the names in many other 
languages are not.
Variable in Prolog have to begin with an 
upper case letter.
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Names: special words

Used to make programs more readable.
Used to name actions to be performed.
Used to separate the syntactic entities of 
programs.
Keyword
n A word that is special only in certain contexts .
n Example: in FORTRAN the special word Real

can be used to declare a variable, but also as 
a variable itself
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Names: special words

n Real TotalSale (variable TotalSale is of type Real)

n Real = 3.1416 (Real is a variable)
n Integer Real (variable Real is of type Integer)

n Real Integer (variable Integer is of type Real)

Disadvantage: poor readability
n Distinguish between names and special 

words by context.

Advantage: flexibility
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Names: special words

Reserved Word
n A special word that cannot be used as a 

user-defined name.

n Example: C’s float can be used to declare a 
variable, but not as a variable itself.
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Variables: Address

The memory address with which a variable 
is associated.
n Also called l-value because that is what is 

required when a variable appears in the LHS 
of an assignment.

A variable (identified by its name) may 
have different addresses at different 
places in a program
n Example: variable X is declared in two 

different subprograms (functions)
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Address

A variable may have different addresses 
at different times during execution
n Example: variable X of a subprogram is 

allocated from the runtime stack with a 
different address each time the subprogram 
is called (e.g. recursion).



5

25Chapter 5: Variables

#include <stdio.h>

// --------- Prototype ---------
void foo();
void bar();
// ---------- Definition ---------
void foo()

{
int x;
printf(“The address of x in foo() is: %d\n”, &x);

}
void bar()

{
printf(“Called from bar(),”);
foo();

}

// ---------- main ----------
int main()

{ The address of x in foo() is: 1244964
int i = 0; Called from bar(). The address of x in foo() is: 1244880
foo();
bar();
sleep(30000);
return 0;

}
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Variables: address

A schematic representation of a variable 
can be drawn as:

Name
Type
Lifetime
Scope

Value

Address
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Variables: address

Concentrate on name, address and value 
attributes
n Simplified representation:

Name Value

Address
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Variables: address (aliases)

If two variable names can be used to access the 
same memory location, they are called aliases.
Aliases are harmful to readability 
n Program readers must remember all of them.
n They are useful in certain circumstances.

Example:

int i, *iptr, *jptr;
iptr = &i;
jptr = &i; 

n A pointer, when de-referenced (*iptr) and the 
variable's name (i) are aliases
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Aliases

Aliases can occur in several ways: 
n Pointers
n Reference variables
n Pascal variant record
n C and C++ unions
n FORTRAN equivalence
n Parameters

Some of the original justifications for aliases are 
no longer valid; e.g. memory reuse in FORTRAN
n Replace them with dynamic allocations.
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type intptr = ^integer;
var x, y: intptr;

begin
new(x);
x^ := 1;
y := x; 
y^ := 2;
writeln(x^);

end;

After the assignment of x to y, y^ and x^ both refer to the same 
variable, and the preceding code prints 2.
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After the declarations, both x and y have 
been allocated in the environment, but the 
values of both are undefined 
n Indicated in the diagram by shading in the 

circles indicating values.

x

y
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After the call to new(x), x^ has been 
allocated, and x has been assigned a 
value equal to the location of x^, but x^ is 
still undefined

x

y
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After the assignment x^ := 1

x

y

1
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The assignment y := x now copies the 
value of x to y, and so makes y^ and x^
aliases of each other (note that x and y are 
not aliases of each other) 

x

y

1
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Finally, the assignment y^ := 2 results in

x

y

2
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Variables: type

Determines the range of values of 
variables
Set the operations that are defined for 
values of that type
Example: in Java, int type:
n Value range of –2,147,483,648 to 2,147,483,647
n Operations: addition, subtraction, multiplication, 

division, and modulus.
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Variables: value

Contents of the location with which the 
variable is associated.
Abstract memory cell
n The physical cell or collection of cells 

associated with a variable
The smallest addressable cell is a byte.
But most types (system-defined or user defined) 
take more.
Abstract memory cell refers to the number of cells 
held by a variable.
n Example: float uses 4 bytes on most machines.
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lvalue and rvalue

Are the two occurrences of a in this 
expression the same?

a := a + 1;
In a sense:
n The one on the left of the assignment refers to 

the location of the variable whose name is a
n The one on the right of the assignment refers to 

the value of the variable whose name is a
a := a + 1;

address value
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Assignment

To access an rvalue, a variable must be 
determined (dereferenced) first.

x := y

y

x
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Assignment

(Some languages) Different meaning to 
assignment: locations are copied instead 
of values.

y

x
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Assignment

Assignment by sharing. An alternative is to 
allocate a new location, copy the value of 
y, and bind x to the new location

y

x
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Binding

The assignment statement is really an 
instance of a more general phenomenon of 
attaching various kinds of values to names.
The association of a name to an attribute is 
called binding
n Assignment statement binds a value to a 

location.

n Identifiers are bond to locations, types, and 
other attributes at various points in the 
translations of a program.
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Binding

Binding time. Bindings happen at different 
and invisible points.
Possible binding times

1. Language design time
n Bind operator symbols to operations 

n Example: bind * to multiplication

2. Language implementation time
n Example: bind floating point type to a 

representation (IEEE floating-point format)
n Example: the data type int in Java is bound to a 

range of values.
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Binding
3. Compile time
n Example: bind a variable to a type in C or Java

4. Link time
n Example: bind a call to a library function to the 

function code.
5. Load time
n Example: bind a C static variable to a memory 

cell.
6. Runtime
n Example: bind a nonstatic local variable to a 

memory cell
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The Concept of Binding
Consider the following:

int C; 
C := C + 5;

n Some of the bindings and their binding times 
are:

The type of C is bound at compiletime.
The set of possible values of C is bound at compiler design
time.
The meaning of the operator + is bound at compiletime 
(when the types of its operands have been determined)
The internal representation of the literal 5 is bound at 
compiler design time.
The value of C is bound at run time.
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Static and Dynamic Binding

A binding is static
n it occurs before run time and
n It remains unchanged throughout program execution

A binding is dynamic
n It occurs during execution or
n It can change during execution of the program

As binding time gets earlier:
n Efficiency goes up
n Safety goes up
n Flexibility goes down
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Type Bindings

A variable must be bound to a data type before 
it can be referenced.
Two key issues in binding a type to an 
identifier:

1. How is the type specified?
2. When does the binding take place?
How? – two kinds of declarations:

1. Explicit declarations
2. Implicit declarations
When? - three kinds of type bindings:

1. Static type binding
2. Dynamic type binding
3. Type inference
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Variable Declarations

An explicit declaration is a program statement 
used for declaring the types of variables.
n Example: int x;
n Advantage: safer, cheaper
n Disadvantage: less flexible

An implicit declaration is a default mechanism 
for specifying types of variables (the first 
appearance of the variable in the program)
n Example: in FORTRAN, variables beginning with I -N 

are assumed to be of type integer.
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Variable Declarations
Advantages: convenience

Disadvantage: reliability (some typographical and 
programmer errors cannot be detected.

Intermediate position: Names for specific types 
must begin with a given character.
n Example: in Perl, variables of type scalar, array and hash 

structures begin with a $, @, or %, respectively.
n Advantages:

Different namespaces for different type variables
@apple vs. %apple vs. @apple

The type of a variable is know through its name.
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Variable Declarations

Implicit declarations leave more room for 
error
n Example: In FORTRAN variables left 

undeclared will be implicitly declared as an 
integer.
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Dynamic Type Binding

The variable is bound to a type when it is 
assigned a value in an assignment 
statement.
n JavaScript and PHP
n Example: in JavaScript

list = { 2, 4, 6, 8 };
list = 17.3;

n Dynamic binding of objects.
n Advantage: flexibility (generic program units)
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Dynamic Type Binding
n Disadvantages: 

Compiler’s type error detection is minimized.
If RHS is not compatible with LHS, the type of LHS is changed as
opposed to generating an error.
n This issue also appears in static type binding languages like C and 

C++

Must be implemented by a pure interpreter rather than a compiler
n It is not possible to create machine code instructions whose 

operand types are not known at compile time.

High cost:
n Type checking must be done at runtime

n Every variable must know its current type

n A variable might have varying sizes because different type values 
require different amounts of storage.

n Must be interpreted.

53Chapter 5: Variables

Type Inference

Rather than by assignment statement, types 
are determined from the context of the 
reference.
Type inferencing is used in some 
programming languages including ML, 
Miranda, and Haskell.
Example:
n Legal:

fun circumf(r) = 3.14159 * r * r; // infer r is real
fun time10(x) = 10 * x; // infer s is integer
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Type Inference

n Illegal:
fun square(x) = x * x 
// can’t deduce anything ( a default value could be 
assigned)

n Fixed
fun square(x : real) = x * x;
// use explicit declaration
fun square(x) = (x : real) * x;
fun square(x) : real = x * (x : real);
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Storage Bindings & Lifetime

Allocation is the process of getting a cell from 
some pool of available cells.
Deallocation is the process of putting a cell 
back into the pool.
The lifetime of a variable is the time during 
which it is bound to a particular memory cell.
n Begin: when the variable is bound to a specific 

cell
n Ends: when the variable is unbound from that 

cell.
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Variables: lifetime

Categories of scalar variables by lifetimes:
n Static

n Stack-dynamic

n Explicit heap-dynamic
n Implicit hep-dynamic
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Static Variables

Bound to memory cells before execution and 
remains bound to the same memory cell 
throughout execution
n Example: all  FORTRAN 77 variables
n Example: C static variables

Advantages:
n Efficiency (direct addressing)
n No allocation/deallocation needed (which is run time 

overhead)
n History-sensitive subprogram support (retain values 

between separate executions of the subprogram)
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Static Variables

Disadvantages:
n If a language only has static variables then

Recursion cannot be supported (lack of 
flexibility).
Storage cannot be shared among variables 
(more storage required)
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Stack-dynamic Variables

Storage bindings are created for variables in 
the run time stack when their declaration 
statement are elaborated (or execution 
reaches the code to which declaration is 
attached), but types are statically bound.
n If scalar, all attributes except address are 

statically bound
Example: local variables in C subprograms and Java 
methods
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Stack-dynamic Variables

Advantages:
n Allows recursion
n Conserves storage

Disadvantages:
n Run time overhead for allocation and 

deallocation.
n Subprogram cannot be history sensitive
n Inefficient references (indirect addressing)
n Limited by stack size.
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Explicit Heap-dynamic Variables

Allocated and deallocated by explicit 
directives, specified by the programmer, 
which take effect during execution.
n Referenced only through pointers or 

references
Example: dynamic objects in C++ (via new/delete, 
malloc/free)
Example: all objects in Java (except primitives)

Advantages:
n Provides for dynamic storage management
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Explicit Heap-dynamic Variables

Disadvantages:
n Unreliable (forgetting to delete)
n Difficult of using pointer and reference variables 

correctly
n Inefficient.

Example:
int *intnode; // create a pointer
…
intnode = new int   // create the heap-dynamic variable
…
delete intnode; // deallocate the heap-dynamic variable
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Implicit Heap-dynamic Variables

Allocation and deallocation caused by 
assignment statements and types not 
determined until assignment.
n Example: All arrays and strings in Perl and JavaScript
n Example: all variables in APL

Advantage: highest degree of flexibility
Disadvantages:
n Inefficient because all attributes are dynamic (a lot of 

overhead)
n Loss of error detection

64Chapter 5: Variables

Summary Table

DynamicHeapBy assignment (run 
time)

Implicit heap-
dynamic

StaticHeapBy explicit instruction 
(run time)

Explicit heap-
dynamic

StaticRun-time stackWhen declaration is 
elaborated (run time)

Stack-dynamic

StaticBefore executionStatic

Type 
binding

Dynamic storage 
from 

Storage binding timeVariable
Category
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Type Checking

Generalizes the concept of operands and 
operators to include subprograms and 
assignments:
n Subprogram is operator, parameters are 

operands.
n Assignment is operator, LHS and RHS are 

operands.
Type checking is the activity of ensuring 
that the operands of an operator are of 
compatible types.
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Type Checking

A compatible type is one that is either:
n Legal for the operator, or
n Allowed under language rules to be implicitly 

converted to a legal type by compiler-generated 
code.

n This automatic conversion is called coercion
Example: adding an int to a float in Java is allowed, 
then int is coerced.

A type error is the application of an operator 
to an operand of an inappropriate type.



12

67Chapter 5: Variables

Type Checking

If all type bindings are 
n Static: nearly all type checking can be static
n Dynamic: type checking must be dynamic

Static type checking is less costly (it is better to 
catch errors at compile time) but it is also less 
flexible (fewer shortcuts and tricks).
Static type checking is difficult when the 
language allows a cell to store a value of 
different types at different time, such as C 
unions, Fortran Equivalences or Ada variant 
records.
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Strong Typing

A programming language is strongly typed if
n Type errors are always detected.
n There is strict enforcement of type rules with no 

exceptions.
n All types are known at compile time, i.e. are statically 

bound.
n With variables that can store values of more than one 

type, incorrect type usage can be detected at run time.

Advantages:
n Strong typing catches more errors at compile time than 

weak typing, resulting in fewer run time exceptions.
n Detects misuses of variables that result in type errors.
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Which languages have strong 
typing?

FORTRAN 77 is not because it does not check 
parameters and because of variable equivalence
statements.
Ada is almost strongly typed but UNCHECKED 
CONVERSIONS is a loophole.
Haskell is strongly typed.
Pascal is (almost) strongly typed, but variant records 
screw it up.
C and C++ are sometimes described as strongly typed, 
but are perhaps better described as weakly typed 
because parameter type checking can be avoided and 
unions are not type checked.
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Strong Typing vs. No Type

Coercion rules strongly affect strong typing
n They can weaken it considerably
n Although Java has just half the assignments 

coercions of C++, its strong typing is still weak (less 
effective than Ada).

n Languages such as Fortran, C and C++ have a great 
deal of coercion and are less reliable than those with 
little coercion, such as Ada, Java, and C#.

In practice, languages fall on between strongly 
typed and untyped.
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Type Compatibility

There are 2 different types of compatibility 
methods for structure (nonscalar) variables:
n Name type compatibility
n Structure type compatibility

Name type compatibility (“name 
equivalence”) means that two variables 
have compatible types if
n They are defined in the same declaration or
n They are defined in declarations that uses the 

same type name.
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Name Type Compatibility

Easy to implement but highly restrictive:
n Subranges of integer types are not compatible 

with integer types.
Example: count cannot be assigned to index

type IndexType is 1..100;
count: Integer;
index: Indextype;

n Only two type names will be compared to 
determine compatibility.
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Structure Type Compatibility

Type compatibility by structure (“structural 
equivalence) means that two variables have 
compatible types if their types have identical 
structures.
More flexible, but harder to implement.
n The entire structures of two types must be compared.
n May create types that are, but should not be 

compatible 
Example: Celsius vs. Fahrenheit

type celsius = float;
Fahrenheit = float;
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Type Compatibility

Consider the problem of two structured types:
n Are two record types compatible if they are structurally 

the same but use different field names?
n Are two array types compatible if they are the same 

except that the subscripts are different (e.g. [1..10] and 
[0..9])?

n Are two enumeration types compatible if their 
components are spelled differently?

n With structural type compatibility, you cannot 
differentiate between types of the same structure (e.g. 
different units of speed, both float).
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Scope
The scope of a variable is the range of statements in a 
program over which it is visible.
n A variable is visible if it ca be referenced in a statement. 

Typical cases:
n Explicitly declared ⇒ local variables
n Explicitly passed to a subprogram ⇒ parameters
n The nonlocal variables of a program unit are those that are visible 

but not declared
n Global variables ⇒ visible everywhere

The scope rules of a language determine how references to 
names are associated with variables.
The two major schemes are static scoping and dynamic 
scoping.
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Static Scope

Also known as “lexical scope”
In static scoping, the scope of a variable can be 
determined at compile time, based on the text of 
a program.
To connect a name reference to a variable, the 
compiler must find the declaration
n Search process: search declarations, first locally, then 

in increasingly larger enclosing scopes, until one is 
found for the given name.

n Enclosing static scopes to a specific scope are called 
its static ancestors; the nearest static ancestor is 
called a static parent.
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Blocks

A block is a section of code in which local 
variables are allocated/deallocated at the 
start/end of the block.
Provides a method of creating static 
scopes inside program units.
Introduced by ALGOL 60 and found in 
most PLs.
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Blocks

Variables can be hidden from a unit by 
having a “closer” variable with the same 
name.
C++ allows access to “hidden” variables 
with the use of :: scope operator.
n Example: if x is a global variable hidden in a 

subprogram by a local variable named x, the 
global could be reference as class_name::x

n Ada: unit.x
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Example of Blocks

C and C++
for (…) {

int index;
…
}

Ada
Declare LCL:

FLOAT;
begin
…
end

Common Lisp
(let ((a 1)

(b foo)
(c))

(setq a (* a a ))
(bar a b ) )
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Scope

Consider the example:
Assume MAIN calls A and B

A calls C and D
B calls A and E
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Static Scope Example

MAINMAIN

E

A

C

D

B

A B

C D E
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Static Scope Example

MAIN

A B

C D E

The desired call graph

MAIN

A

C

B

ED

The potential call graph
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Static Scope Evaluation

Suppose now that E() needs to get access to a 
variable in D()
One solution is to move E() inside the scope of D()
n But then E can no longer access the scope of B

Another solution is to move the variables defined in 
D to main
n Suppose x was moved from D to main, and another x

was declared in A, the latter will hide the former.
n Also having variable declared very far from where they 

are used is not good for readability.
Overall: static scope often encourages many global 
variables.
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Dynamic Scope

Based on calling sequences of program units, 
not their textual layout.
Reference to variables are connected to 
declarations by searching back through the 
chain of subprogram calls that forced execution 
at this point.
Used in APL, Snobol and LISP
n Note that these languages were all (initially) 

implemented as interpreters rather than compilers.
Consensus is that PLs with dynamic scoping 
lead to programs which are difficult to read and 
maintain.
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Scope Example

MAIN
- declaration of x

SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...  

. . .
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

•Static scoping 
•reference to x is to MAIN’s x

•Dynamic scoping 
•reference to x is to SUB1’s x
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Static vs. Dynamic Scoping

Advantages of Static Scoping:
n Readability
n Locality of reasoning
n Less run time overhead

Disadvantages:
n Some loss of flexibility

Advantages of Dynamic Scoping
n Some extra convenience

Disadvantages
n Loss of readability
n Unpredictable behavior (minimal parameter passing)
n More run-time overhead.
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Scope vs. Lifetime

While these two issues seem related, they can 
differ.
In Pascal, the scope of a local variable and the 
lifetime of the local variable seem the same.

In C/C++, a local variable in a function might 
be declared static but its lifetime extends over 
the entire execution of the program and 
therefore, even through it is inaccessible, it is 
still memory.
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Referencing Environment

The referencing environment of a 
statement is the collection of all names 
that are visible in the statement.
In a static-scoped language, it is the local 
variables plus all of the variables in all the 
enclosing scopes.
In a dynamic-scoped language, the 
referencing environment is the local 
variable plus all visible variables in all 
active subprograms.
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Named Constants

A named constant is a variable that is 
bound to a value only when it is bound to 
storage.
The value of a named constant can not 
change while the program is running.

Name
Type
Lifetime
Scope

Value
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Named Constants

Advantages: 
n Readability 
n Maintenance

The binding of values to named constants 
can be either static of dynamic 
n const int length = 5 * x;
n final flow rate = 1.5*values;



16

91Chapter 5: Variables

Named Constants

Languages
n Pascal: literals only
n Modula-2 and FORTRAN 90: constant-

value expressions
n Ada, C++, and Java: expressions of any 

kind

Advantages
n Increases readability without loss of 

effective.
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Variable Initialization

The binding of a variable to a value at the 
time it is bound to storage is called 
initialization.
Initialization is often done on the 
declaration statement
n Example: In Java

int sum = 0;
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Summary

Case sensitivity and the relationship of names to 
special words represent design issues of names
Variables are characterized by the sextuples: 
name, address, value, type, lifetime, scope
Binding is the association of attributes with 
program entities
Scalar variables are categorized as: static, stack 
dynamic, explicit heap dynamic, implicit heap 
dynamic
Strong typing means detecting all type errors


