
1

Chapter 3

Semantics

2Chapter 3: Semantics

Topics

Introduction
Static Semantics
Attribute Grammars
Dynamic Semantics
Operational Semantics
Axiomatic Semantics
Denotational Semantics

3Chapter 3: Semantics

Introduction

Language implementors
n Understand how all the constructs of the

language are form and their intended effect
when executed.

Language users
n Determine how to encode a possible solution

of a problem (program) using the reference
manual of the programming language.

Less knowledge of how to correctly define
the semantics of a language.

4Chapter 3: Semantics

Introduction

Well-designed programming language
n Semantics should follow directly from syntax.
n Form of a statement should strongly suggest

what the statement is meant to accomplish.
Definition of a programming language
n Complete: semantics and syntax are fully

defined.
A language should provides a variety of

different constructs, each one with a
precise definition.

5Chapter 3: Semantics

Introduction

Language manuals
n Definition of semantics is given in ordinary

natural language.

n Construct
Syntax: a rule (or set of rules) from a BNF or
other formal grammar.
Semantics: a few paragraphs and some
examples.

6Chapter 3: Semantics

Introduction

Natural language description
n Ambiguous in its meaning

Different readers come away with different
interpretations of the semantics of a language
construct.

A method is needed for giving a
readable, precise, and concise definition
of the semantics of an entire language.

2

7Chapter 3: Semantics

Static Semantics

BNFs cannot describe all of the syntax of
programming languages.
n Some context-specific parts are left out.

Is there a form to generate L={anbncn}
using a context-free grammar or a BNF?
An attempt:

<string> ::= <aseq> <bseq> <c seq>
<a seq> ::= a | <aseq> a
<b seq> ::= b | <bseq> b
<c seq> ::= c | <c seq> c

L’= {akbmcn | k=1, m=1, n=1}
No context-free grammar generates L

8Chapter 3: Semantics

Static Semantics

Some problems have nothing to do with
“meaning” in the sense of run-time behavior
n They are concern about the legal form of the

program.
n Static semantics refers to type checking and resolving

declarations.
n Examples:

All variables must be declared before they are referenced
Ada: the name on the end of a procedure must match the
procedure’s name
Both sides of an assignment must be of the same type.

9Chapter 3: Semantics

Static Semantics

Earliest attempts to add semantics to a
programming language
Add extensions to the BNF grammar
that defined the language.
n Given a parse tree for a program,

additional information could be extracted
from that tree.

10Chapter 3: Semantics

Attribute Grammars: Basic
Concepts

A context-free grammar extended to provide
context-sensitivity information by appending
attributes to each node of a parse tree.
Each distinct symbol in the grammar has
associated with it a finite, possibly empty, set of
attributes.
n Each attribute has a domain of possible values.
n An attribute may be assigned values from its domain

during parsing.
n Attributes can be evaluated in assignments and

conditions.

11Chapter 3: Semantics

Attribute Grammars: Generalities

Two classes of attributes:
n Synthesized attribute

Gets its value from the attributes attached to its
children (subtree below the node).
Used to pass semantic information up a parse
tree.

n Inherited attribute
Gets its value from the attributes attached to the
parent (subtree above the node).
Used to pass semantic information down and
across a tree.

12Chapter 3: Semantics

Attribute Grammars: Parse Tree

t

S

A

inherited

synthesized

3

13Chapter 3: Semantics

Attribute Grammar Definition

Associate some functions to compute the
value of the attributes with each
production in the grammar.
These local definitions associated with
each production of the grammar define
the values of the attributes for all parse
trees.
Given the definitions and a parse tree,
algorithms exist to compute the attributes
of all the nodes in the three.

14Chapter 3: Semantics

Attribute Grammars

Starting with the underlying context-free
grammar G=<N,T,P,S>
For every production p in P
n Number of terminal and nonterminal symbols

in string a : n(p).
If a is the empty string, then n(p)=0.
Sometimes each symbol of a production will be
considered individually.
n For all production p∈ P : A? a or p0? p1,p2,…pn (p)

15Chapter 3: Semantics

Attribute Grammars

Augment the context-free grammar by
attributes and semantic rules.
Set of attributes: At.
n For each attribute a∈At: associate a set of

values Domain(a).

n An attribute is just a name for a set of values

Set of attributes: two disjoint classes:
n Inherited attributes In and the synthesized

attributes Syn (At=In∪ Syn and In∩ Syn=∅).
16Chapter 3: Semantics

Attribute Grammars: attributes

There is a set of attributes At(x)⊂At to
every grammar symbol x∈N∪T
n At(x) can be seen as additional information

about the symbol x.
Set
n In(x) = { a∈At(x) | a∈ In }
n Syn(x) = { a∈At(x) | a∈ Syn }
n Requirements:

In(S)= ∅ (start symbol can inherit no information)
For all t∈T, Syn(t)= ∅ (there is no structure beneath a
terminal from which to synthesize information)

17Chapter 3: Semantics

Same attribute can be associated with different
symbols appearing in the same grammar rule.
n Example: S? AB, all could inherit attribute int

associated to them: In(S)=In(A)=In(B)={int}.
n It is impossible to consider the set of attributes

associated with all the symbols of a production
without losing track of which attributes appear more
than once.

n More confusing: productions that have a nonterminal
appearing more than once, as in S? ASA.

Attribute Grammars: rules

18Chapter 3: Semantics

Attribute Grammars: attribute
occurrences

Attribute occurrenceof a rule p is an ordered
pair of attributes and natural number <a,j>
representing the attribute a at position j in
production p.
n Particular rule p∈P an attribute occurrence at j will

be written pj.a.
n Set of attribute occurrences for a production p is

defined: AO(p) = { pj.a | a∈At(pj), 0≤ j ≤ n(p) }

4

19Chapter 3: Semantics

Attribute Grammars: attribute
occurrences

Set of attribute occurrences for a rule is
divided into two disjoint subsets.
n Defined occurrences for a production p:

DO(p) = { p0.s | s∈ Syn(p0)} ∪ { pj .i | i∈In(p j), 1≤ j ≤ n(p) }
In a parse tree, the set UO(p) represents the information
flowing into the node of the parse tree labeled p0

n Used occurrences for a production p:
UO(p) = { p0.i | i∈In(p0)} ∪ { pj .s | s∈Syn(p j), 1≤ j ≤ n(p) }
In a parse tree, the set DO(p) represents the information
flowing out flowing into the node of the parse tree labeled p0

20Chapter 3: Semantics

Attribute Grammars: flow of
attribute occurrences

subtree
above S

subtree
below A

subtree
below B

S

A B

In(S) Syn(S)

In(B) Syn(B)In(A) Syn(A)

Rule: S? AB

21Chapter 3: Semantics

Attribute Grammars: used attribute
occurrences

Used attribute occurrences (the
information flowing in) are In(S), Syn(A),
and Syn(B).

Syn(S)

In(S) In(A) In(B)

synthesized

inherited

S A B

Syn(B)Syn(A)

22Chapter 3: Semantics

Attribute Grammars: defined
attribute occurrences

Defined attribute occurrences (the
information flowing out) are Syn(S), In(A),
and In(B).

Syn(S)

In(S) In(A)

synthesized

inherited

S A B

Syn(B)Syn(A)

In(B)

23Chapter 3: Semantics

Semantic function fp,v.
n For every attribute occurrence v∈DO(p)
n Defined values for attributes in DO(p) in terms of the

values of the attributes in UO(p).
n Produces a value for the attribute a from values of the

attributes of UO(p).
n There is no requirement that all the attribute

occurrences of UO(p) are used by fp,v.
n Dependency set (Dp,v.) of fp,v: is the set of attribute

occurrences used (subset of UO(p))
n Dp,v could be empty

Value of the attribute: computed without any other additional
information. The function fp ,v is a constant.

Attribute Grammars: semantic
function

24Chapter 3: Semantics

Attribute Grammar

An attribute grammar as a context-free
grammar with two disjoint sets of
attributes (inherited and synthesized)
and semantic functions for all defined
attribute occurrences.

5

25Chapter 3: Semantics

Attribute Grammar: binary digits
example

Context-free grammar that generates strings
of binary digits.

p: B → D
q: B → D B
r: D → 0
s: D → 1

Attributes:
n val: accumulate the value of the binary numbers
n pow and pos: keep track of the position and the

power of 2.

synthesized

inherited

pos, val val

pow

B D

26Chapter 3: Semantics

Attribute Grammar: binary digits
example

Compute the defined and the used occurrences for
each production
The defined occurrences is the set of synthesized
attributes of the LHS plus the set of inherited
attributes of all the grammar symbols of the RHS.

p

q

r

s

Defined Used

B.pos, B.val, D.pow

B1.pos, B1.val, D.pow

D.val

D.val

D.val

D.pow

D.pow

B2.pos, B2.val, D.val

27Chapter 3: Semantics

Attribute Grammar: binary digits
example

Function definitions for the eight defined attribute occurrences.

p: B → D
B.pos := 1
B.val := D.val
D.pow := 0

q: B1 → D B2
B1.pos := B2.pos+1
B1.val := B2.val+D.val
D.pow := B2.pos

r: D → 0
D.val := 0

s: D → 1
D.val := 2D.pow

28Chapter 3: Semantics

Attribute Grammar: binary digits
example

pos val

pos val

pos val

pos valpos val

pos val

pos val

pos val

B

D B

D
B

D B

D

1

0

1

0

3 8

4 10

2 0

3 2

1 2

2 2

1 0

0 0

Evaluation of parse tree for 1010

29Chapter 3: Semantics

Dynamic Semantics

Semantics of a programming language is
the definition of the meaning of any
program that is syntactically valid.
intuitive idea of programming meaning:
“whatever happens in a (real or model)
computer when the program is executed. ”
n A precise characterization of this idea is

called operational semantics.

30Chapter 3: Semantics

Dynamic Semantics

Another way to view programming
meaning is to start with a formal
specification of what a program is
supposed to do, and then rigorously
prove that the program does that by
using a systematic series of logical
steps.
n This approach evokes the idea of

axiomatic semantics.

6

31Chapter 3: Semantics

Dynamic Semantics

A third way to view the semantics of a
programming language is to define the
meaning of each type of statement that
occurs in the (abstract) syntax as a state-
transforming mathematical function.
n The meaning of a program can be expressed

as a collection of functions operating on the
program state.

n This approach is called denotational
semantics.

32Chapter 3: Semantics

Dynamic Semantics: advantages
and disadvantages

Operational Semantics
n Advantage of representing program

meaning directly in the code of a real (or
simulated) machine.

n Potential weakness, since the definition of
semantics is confined to a particular
architecture (either real or abstract).

Virtual machine also needs a semantic
description, which adds complexity and can
lead to circular definitions.

33Chapter 3: Semantics

Dynamic Semantics: advantages
and disadvantages

Axiomatic semantics is useful in the exploration
of formal properties of programs.
n Programmers who must write provably correct

programs from a precise set of specification are
particularly well -served by this semantic style.

Denotational semantics is valuable because its
functional style brings the semantic definition of
a language to a high level of mathematical
precision
n Language designers obtain a functional definition of

the meaning of each language construct that is
independent of any particular machine architecture.

34Chapter 3: Semantics

Operational Semantics

Provides a definition of program meaning
by simulating the program’s behavior on a
machine model that has a very simple
(through not necessarily realistic)
instruction set and memory organization.
Definition of the virtual computer can be
described using an existing programming
language or a virtual computer (idealized
computer).

35Chapter 3: Semantics

Operational Semantics: process
Change in the state of the machine (memory,
registers, etc) defines the meaning of the
statement.

The operational semantics of a high-level
language can be described using a virtual
computer.
n A pure hardware interpreter is too expensive.
n A pure software interpreter has also problems:

Machine-dependent
Difficult to understand

n A better alternative: a complete computer simulation.

36Chapter 3: Semantics

Operational Semantics: process

The process:
n Identify a virtual machine (an idealized

computer).

n Build a translator (translates source code to
the machine code of an idealized computer).

n Build a simulator for the idealized computer.

Operational semantics is sometimes called
transformational semantics, if an existing
programming language is used in place of
the virtual machine.

7

37Chapter 3: Semantics

Operational Semantics: automaton

Automaton could be used as a virtual
machine:
n More complex that the simple automata

models used in the study of syntax and parsing
Automaton has
n Internal state that corresponds to the internal

state of the program when it its executing;
The state contains all the values of the variables,
the executable program, and various system-
defined housekeeping data structures.

38Chapter 3: Semantics

Operational Semantics: automaton
n A set of formally defined operations used to

specify how the internal state of the automaton
may change,

Corresponds to the execution of one instruction in
the program.

n A second part of the definition specifies how a
program text is translated into an initial state
for the automaton

From this initial state, the rules defining the
automaton specify how the automaton moves from
state to state until a final state is reached.

39Chapter 3: Semantics

Operational Semantics: process

Example:

Pascal statement

for i := x to y do
begin

…
end

Operational Semantics

i := x
loop: if i > y goto out

…
i := i + 1
goto loop

out: …

Operational Semantics
(lower level)

mov i, r1
mov y, r2
jmpifless(r2,r1,out)
…

40Chapter 3: Semantics

Operational Semantics: evaluation

Advantages:
n May be simple, intuitive for small examples/
n Good if used informally.
n Useful for implementation.

Disadvantages:
n Very complex for large programs.
n Depends on programming languages of lower levels

(not mathematics)

Uses:
n Vienna Definition Language (VDL) used to define PL/I

(Wegner, 1972).
n Compiler work

41Chapter 3: Semantics

Axiomatic Semantics

Programmers: confirm or prove that a program
does what it is supposed to do under al
circumstances
Axiomatic semantics provides a vehicle for
developing proofs that a program is “correct”.

42Chapter 3: Semantics

Axiomatic Semantics

• Example: prove mathematically that the
C/C++ function Max actually computes as
its result the maximum of its two
parameter: a and b.

• Calling this function one time will obtain an
answer for a particular a and b, such as 8
and 13. But the parameters a and b define a
wide range of integers, so calling it several
times with all the different values to prove its
correctness would be an infeasible task.

8

43Chapter 3: Semantics

Axiomatic Semantics

• Construct a proof to prove the correctness
of a program

• The meaning of a statement is defined by the
result of the logical expression that precedes
and follows it.

• Those logical expressions specifies constraints
on program variables.

• The notation used to describe constraints is
predicate calculus .

44Chapter 3: Semantics

Axiomatic Semantics: assertions

• The logical expressions used in axiomatic
semantics are called assertions.

• Precondition: an assertion immediately
preceding a statement that describes the
constraints on the program variables at that
point.

• Postcondition: an assertion immediately
following a statement that describes the
new constraints on some variables after the
execution of the statement.

45Chapter 3: Semantics

Axiomatic Semantics: assertions

• Example
sum = 2 * x + 1 { sum > 1 }

• Preconditions and postconditions are enclosed
in braces

• Possible preconditions:
{ x > 10 }

{ x > 50 }

{ x > 1000 }
{ x > 0 }

46Chapter 3: Semantics

Axiomatic Semantics: weakest
precondition

• It is the least restrictive precondition that will
guarantee the validity of the associated
postcondition.

• Correctness proof of a program can be
constructed if the weakest condition can be
computed from the given postcondition.

• Construct preconditions in reverse:
• From the postcondition of the last statement of the

program generate the precondition of the previous
statement.

• This precondition is the postcondition of the previous
statement, and so on.

47Chapter 3: Semantics

Axiomatic Semantics: weakest
precondition

• The precondition of the first statement states the
condition under which the program will compute the
desired results.

• Correct program: If the precondition of the first
statement is implied by the input specification of the
program.

• The computation of the weakest precondition can
be done using:

• Axiom: logical statement that is assumed to be true.
• Inference rule: method of inferring the truth of one

assertion on the basis of the values of other
assertions.

48Chapter 3: Semantics

Axiomatic Semantics: assignment
statements

• Let x=E be a general assignment
statement and Q its postconditions.

• Precondition: P=Qx→E
• P is computed as Q with all instance of x

replaced by E
• Example

a = b/2-1 {a<10}
Weakest precondition: substitute b/2-1 in the postcondition {a<10}

b/2-1 < 10
b < 22

9

49Chapter 3: Semantics

Axiomatic Semantics: assignment
statements

• General notation of a statement: {P} S {Q}
• General notation of the assignment

statement: {Qx→E}x = E {Q}
• More examples:

x = 2*y-3 {x>25} 2*y-3 > 25
y > 14

x = x+y-3 {x>10} x+y-3 > 10
y > 13-x

50Chapter 3: Semantics

Axiomatic Semantics: assignment
statements

• An assignment with a precondition and a
postcondition is a theorem.

• If the assignment axiom, when applied to the
postcondition and the assignment statement, produces
the given precondition, the theorem is proved.

• Example:
{x > 5} x = x-3 {x>0}

Using the assignment axiom on
x = x-3 {x>0}
{x > 3}

{x > 5} implies {x > 3}

51Chapter 3: Semantics

Axiomatic Semantics: sequences

• The weakest precondition cannot be
described by an axiom (only with an inference
rule)

• It depends on the particular kinds of statements in
the sequence.

• Inference rule:
• The precondition of the second statement is

computed.
• This is used as the postcondition of the first

statement.
• The precondition of the first element is the

precondition of the whole sequence.

52Chapter 3: Semantics

Axiomatic Semantics: sequences

• Example:
y = 3*x+1;
x = y+3;

{x < 10}
Precondition of last assignment statement
y < 7

Used as postcondition of the first statement
3*x+1 < 7
x < 2

53Chapter 3: Semantics

Axiomatic Semantics: selection

• Inference rule:
• Selection statement must be proven for

both when the Boolean control expression
is true and when it is false.

• The obtained precondition should be used
in the precondition of both the then and the
else clauses.

54Chapter 3: Semantics

Axiomatic Semantics: selection
• Example:

if (x > 0)
y = y-1

else y = y+1
{y > 0}

Axiom for assignment on the “then” clause
y = y-1 {y > 0}
y-1 > 0
y > 1

Same axiom to the “else” clause
y = y+1 {y > 0}
y+1 > 0
y > -1

But {y > 1}⇒ {y > -1}
Precondition of the whole statement: {y > 1}

10

55Chapter 3: Semantics

Axiomatic Semantics: evaluation

• Advantages:
• Can be very abstract.
• May be useful in program correctness proofs.
• Solid theoretical foundations.

• Disadvantages:
• Predicate transformers are hard to define.
• Hard to give complete meaning.
• Does not suggest implementation.

• Uses:
• Semantics of Pascal.
• Reasoning about correctness.

56Chapter 3: Semantics

Denotational Semantics

Most rigorous, abstract, and widely known
method.

Based on recursive function theory.
Originally developed by Scott and Strachery
(1970).

Key idea: define a function that maps a program
(a syntactic object) to its meaning (a semantic
object).
n It is difficult to create the objects and mapping

functions.

57Chapter 3: Semantics

Denotational vs. Operational

Denotational semantics is similar to high-
level operational semantics, except:
n Machine is gone.
n Language is mathematics (lambda calculus).

Differences:
n In operational semantics, the state changes

are defined by coded algorithms for a virtual
machine

n In denotational semantics, they are defined by
rigorous mathematical functions.

58Chapter 3: Semantics

Denotational Semantics: evaluation

Advantages:
n Compact and precise, with solid mathematical

foundation.
n Provides a rigorous way to think about programs.
n Can be used to prove the correctness of programs.
n Can be an aid to language design.

Disadvantages:
n Requires mathematical sophistication
n Hard for programmers to use.

Uses:
n Semantics for Algol 60
n Compiler generation and optimization

59Chapter 3: Semantics

Summary

Each form of semantic description has its
place:
n Operational

Informal descriptions
Compiler work

n Axiomatic
Reasoning about particular properties
Proofs of correctness

n Denotational
Formal definitions
Probably correct implementations

Chapter 3

Attribute Grammars

11

61Chapter 3: Semantics

Meaning

What is the semantics or meaning of the
expression: 2+3
n Its value: 5

n Its type (type checker): int
n A string (infix-to-postfix translator): + 2 3

The semantics of a construct can be any
quantity or set of quantities associated
with the construct.

62Chapter 3: Semantics

Attribute Grammars

Formalism for specifying semantics based on
context-free grammars (BNF).
Used to solve some typical problems:
n Type checking and type inference
n Compatibility between procedure definition and call.

Associate attributes with terminals and
nonterminals.

Associate semantic functions with productions.
n Used to compute attribute values.

63Chapter 3: Semantics

Attributes

A quantity associated with a construct.
n X.a for attribute a of X (X is either a

nonterminal or a terminal).

Attributes have values:
n Each occurrence of an attribute of an attribute

in a parse tree has a value.

Grammar symbols can have any number
of attributes.

64Chapter 3: Semantics

Example: Evaluating arithmetic
expressions

<exp> ::= <exp> + <term>

<exp> ::= <exp> – <term>
<exp> ::= <term>

<term> ::= <term> * <factor>

<term> ::= <term> div <factor>
<term> ::= <factor>

<factor> ::= (<exp>)
<factor> ::= num

65Chapter 3: Semantics

Example: 7*5
val is the value of the digit
At the root of the parse tree:
n <exp>.val has value 35

At the bottom-left:
n <num>.val has value 7

Attributes for terminal symbols:
n come with the symbol
n the value of the token

Attribute values for nonterminals:
n Defined by semantic rules

Attached to productions

Decorated parse tree
n Attributes attached to the nodes

<exp>. val = 35

<term>. val = 7 <factor>.val = 5

<term>. val = 35

<num>.val = 5<factor>.val = 7

<num>.val = 7

*

66Chapter 3: Semantics

Attributes

Syntax symbols can return values (sort of output
parameters)
n Digits can return its numeric value

digit <?val>

Nonterminal symbols can have also input
attributes.
n Parameters that are passed from the “calling”

production.
number <?base, ?val>
n base: number base (e.g. 10 or 2 or 16)
n val: returned value of the number

12

67Chapter 3: Semantics

Information Flow

inherited

synthesized

... ...

computed

available

68Chapter 3: Semantics

Synthesized Attributes

The values is computed from the values of
attributes of the children.
Pass information up the parse tree
(bottom-up propagation).
S-attribute grammar uses only synthesized
attributes
Example:
n Value of expressions
n Types of expressions

69Chapter 3: Semantics

Inherited Attributes

The values is computed from the values of
attributes of the siblings and parent.
Pass information down the parse tree (top-
down propagation) or from left siblings to
the right siblings
Example:
n Type information
n Where does a variable occur? LHS or RHS

70Chapter 3: Semantics

Example 1
Translating decimal numbers between 0
and 99 into their English phrases.

number phrase
0 zero

10 ten
19 nineteen
20 twenty
31 thirty one

n Translations are based on each digit
31: thirty, the translation of 3 on the left, and one,
the translation of 1 on the right.
Exceptions:
n 30 is thirty , not thirty zero
n 19: is nineteen, not ten nine

71Chapter 3: Semantics

Example 1: Syntax

<number> ::= <digit>
<number> ::= <digit> <set_digit>
<set_digit> ::= <digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9

<N> ::= <D>
<N> ::= <D> <S>
<S> ::= <D>
<D> ::= 0|1|2|3|4|5|6|7|8|9

72Chapter 3: Semantics

Attribute Occurrences

Same attribute can be associated with different
symbols appearing in the same grammar rule.
Attribute occurrenceof a rule p is an ordered
pair of attributes and natural number <a,j>
representing the attribute a at position j in
production p.
Two disjoint subsets:
n Defined occurrences for a production:

The information flowing into a node of the parse tree.
n Used occurrences for a production

The information flowing out a node of the parse tree.

13

73Chapter 3: Semantics

Rule: S? AB

• Set of inherited attributes of all the grammar symbols on
the LHS plus the set of synthesized attributes of the RHS.

Used Attribute Occurrences

Syn(S)

In(S) In(A) In(B)

synthesized

inherited

S A B

Syn(B)Syn(A)

74Chapter 3: Semantics

Rule: S? AB

• Set of synthesized attributes of all the grammar symbols
on the LHS plus the set of inherited attributes of the RHS.

Defined Attribute Occurrences

Syn(S)

In(S) In(A)

synthesized

inherited

S A B

Syn(B)Syn(A)

In(B)

75Chapter 3: Semantics

Semantic Function

Define a semantic function for every
defined occurrence in terms of the values
of used occurrences.

… …

Rule 1

Rule 2

Defined Used

… …

Function definitions
76Chapter 3: Semantics

Example 1: Semantics
<N> ::= <D> N.trans := spell(D.val)
<N> ::= <D> <S> S.in ::= D.val

N.trans ::= S.trans
<S> ::= <D> S.val := if D.val = 0 then decade(S.in)

else if S.in ≤ 1 then spell(10*S.in +D.val)
else decade(P.in) || spell(D.val)

<D> ::= 0 <D>.val := 0
…

<D> ::= 9 <D>.val := 9

Functions spell and decade:
spell(1) = one, spell(2) = two, …, spell(19) = nineteen

decade(0) = zero, decade(1) = ten, …, decade(9) = ninety

77Chapter 3: Semantics

Example 2: Syntax

<binary> ::= <digit>
<binary> ::= <digit> <binary>
<digit> ::= 0
<digit> ::= 1

 ::= <D>
 ::= <D>
<D> ::= 0
<D> ::= 1

Decimal value of a binary number

78Chapter 3: Semantics

Example 2: Semantics

 ::= <D> B.pos := 1
B.val := D.val
D.pow := 0

<B1> ::= <D> <B2> B1.pos := B2.pos + 1
B1.val := B2.val + D.val
D.pow := B2.pos

<D> ::= 0 D.val := 0
<D> ::= 1 D.val := 2D.pow

14

79Chapter 3: Semantics

Example 2: Sample Parse Tree

pos val

pos val

pos val

pos valpos val

pos val

pos val

pos val

B

D B

D
B

D B

D

1

0

1

0

3 8

4 10

2 0

3 2

1 2

2 2

1 0

0 0

Evaluation of parse tree for 1010

80Chapter 3: Semantics

Example 3: Syntax

<assign> ::= <var> = <expr>
<expr> ::= <var> + <var>
<expr> ::= <var>
<var> ::= X | Y | Z

<A> ::= <V> = <E>
<E> ::= <V> + <V>
<E> ::= <V>
<V> ::= X | Y | Z

Simple Assignment Statements

81Chapter 3: Semantics

Example 3: Semantics

<A> ::= <V> = <E> E.exp := V.act
<E> ::= <V> + <V> E.act = if (V1.act = int) and

V2.act := int) then int
else real

<E> ::= <V> E.act := E.exp
<V> ::= X | Y | Z V.act = …

Variables can be either real or integer.
Both sides of an assignment different: type = real
Same type on both sides of an assignment

82Chapter 3: Semantics

Attribute Grammars: Summary

An attribute grammar is a context-free
grammar with two disjoint sets of
attributes (inherited and synthesized)
and semantic functions for all defined
attribute occurrences.

83Chapter 3: Semantics

Attribute Grammar: Process

1. EBNF
2. Attributes

• Identify the parameters of the syntax
symbols.
§ Output attributes (synthesized) yield results.
§ Input attributes (inherited) provide context.

3. Semantic functions

Chapter 3

Operational Semantics

15

85Chapter 3: Semantics

Dynamic Semantics

Semantics of a programming language is
the definition of the meaning of any
program that is syntactically valid.
Intuitive idea of programming meaning:
“whatever happens in a (real or model)
computer when the program is executed. ”
n A precise characterization of this idea is

called operational semantics.

86Chapter 3: Semantics

Operational Semantics:
advantages and disadvantages
Operational Semantics
n Advantage of representing program

meaning directly in the code of a real (or
simulated) machine.

n Potential weakness, since the definition of
semantics is confined to a particular
architecture (either real or abstract).

Virtual machine also needs a semantic
description, which adds complexity and can
lead to circular definitions.

87Chapter 3: Semantics

Operational Semantics

Provides a definition of program meaning by
simulating the program’s behavior on a
machine model that has a very simple (through
not necessarily realistic) instruction set and
memory organization.
Definition of the virtual computer can be
described using an existing programming
language or a virtual computer (idealized
computer).
Change in the state of the machine (memory,
registers, etc) defines the meaning of the
statement.

88Chapter 3: Semantics

Process

The process:
n Identify a virtual machine (an idealized

computer).

n Build a translator (translates source code to
the machine code of an idealized computer).

n Build a simulator for the idealized computer.

Operational semantics is sometimes called
transformational semantics, if an existing
programming language is used in place of
the virtual machine.

89Chapter 3: Semantics

Example

Pascal statement

for i := x to y do
begin

…
end

Operational Semantics

i := x
loop: if i > y goto out

…
i := i + 1
goto loop

out: …

Operational Semantics
(lower level)

mov i, r1
mov y, r2
jmpifless(r2,r1,out)
…

90Chapter 3: Semantics

Notation

State of a program σ:
n A set of pairs <v,val> that represent all active variables

and their current assigned values at some stage during
the program’s execution.

σ = { <x,1>, <y,2>, <z,3> }
After y = 2 * z + 3 σ = { <x,1>, <y,9>, <z,3> }
After w = 4 σ = { <x,1>, <y,9>, <z,3>, <w,4> }

State transformation of these type of assignments
can be represented by a function called overriding
union U
n σ1 = { <x,1>, <y,2>, <z,3> }
n σ2 = { <y,9>, <w,4> }
n σ1 U σ2 = { <x,1>, <y,9>, <z,3>, <w,4> }

16

91Chapter 3: Semantics

Notation

Execution rule:
premise

conclusion

n “If the premise is true, then the conclusion is
true”

92Chapter 3: Semantics

Examples

Addition of two expressions
σ(e1) ⇒ v1 σ(e1) ⇒ v1

σ(e1 + e2) ⇒ v1 + v2
Assignment statement (s.target = s.source)

σ(s.source) ⇒ v
σ(s.target = s.source) ⇒ σ U { <s.target,v> }
n Suppose: assignment x = x +1, current state x=5

σ(x) ⇒ 5 σ(1) ⇒ 1
σ(x+1) ⇒ 6

σ(x = x+1) ⇒ {…, <x,5>, …} U { <x,6> }

93Chapter 3: Semantics

Examples

Conditionals (s = if (s.text) s.then else s.else)

σ(s.test) ⇒ true σ(s.then) ⇒ σ1

σ(if(s.test)s.then else s.else) ⇒ σ1

σ(s.test) ⇒ false σ(s.else) ⇒ σ1

σ(if(s.test)s.then else s.else) ⇒ σ1

94Chapter 3: Semantics

Examples

Loops (s = while (s.test) s.body)

σ(s.test) ⇒ true σ (s.body) ⇒ σ1 σ1(while(s.test)s.body) ⇒ σ1

σ(while (s.text) s.body) ⇒ σ1

σ(s.test) ⇒ false
σ(while (s.text) s.body) ⇒ σ

95Chapter 3: Semantics

Evaluation

Advantages:
n May be simple, intuitive for small examples/
n Good if used informally.
n Useful for implementation.

Disadvantages:
n Very complex for large programs.
n Depends on programming languages of lower levels

(not mathematics)

Uses:
n Vienna Definition Language (VDL) used to define PL/I

(Wegner, 1972).
n Compiler work

Chapter 3

Axiomatic Semantics

17

97Chapter 3: Semantics

Dynamic Semantics

Another way to view programming
meaning is to start with a formal
specification of what a program is
supposed to do, and then rigorously
prove that the program does that by
using a systematic series of logical
steps.
n This approach evokes the idea of

axiomatic semantics.

98Chapter 3: Semantics

Axiomatic Semantics

Programmers: confirm or prove that a
program does what it is supposed to
do under al circumstances
Axiomatic semantics provides a
vehicle for developing proofs that a
program is “correct”.

99Chapter 3: Semantics

Axiomatic Semantics

• Example: prove mathematically that the
C/C++ function Max actually computes as
its result the maximum of its two
parameter: a and b.

• Calling this function one time will obtain an
answer for a particular a and b, such as 8
and 13. But the parameters a and b define a
wide range of integers, so calling it several
times with all the different values to prove its
correctness would be an infeasible task.

100Chapter 3: Semantics

Assertions

• The logical expressions used in axiomatic
semantics are called assertions.

• Precondition: an assertion immediately
preceding a statement that describes the
constraints on the program variables at that
point.

• Postcondition: an assertion immediately
following a statement that describes the
new constraints on some variables after the
execution of the statement.

101Chapter 3: Semantics

Assertions

• Example
sum = 2 * x + 1 { sum > 1 }

• Preconditions and postconditions are enclosed
in braces

• Possible preconditions:
{ x > 10 }

{ x > 50 }

{ x > 1000 }
{ x > 0 }

102Chapter 3: Semantics

Weakest Precondition

• It is the least restrictive precondition that will
guarantee the validity of the associated
postcondition.

• Correctness proof of a program can be
constructed if the weakest condition can be
computed from the given postcondition.

• Construct preconditions in reverse:
• From the postcondition of the last statement of the

program generate the precondition of the previous
statement.

• This precondition is the postcondition of the previous
statement, and so on.

18

103Chapter 3: Semantics

Weakest Precondition

• The precondition of the first statement states the
condition under which the program will compute the
desired results.

• Correct program: If the precondition of the first
statement is implied by the input specification of the
program.

• The computation of the weakest precondition can
be done using:

• Axiom: logical statement that is assumed to be true.
• Inference rule: method of inferring the truth of one

assertion on the basis of the values of other
assertions.

104Chapter 3: Semantics

Assignment Statements

• Let x=E be a general assignment
statement and Q its postconditions.

• Precondition: P=Qx→E
• P is computed as Q with all instance of x

replaced by E
• Example

a = b/2-1 {a<10}
Weakest precondition: substitute b/2-1 in the postcondition {a<10}

b/2-1 < 10
b < 22

105Chapter 3: Semantics

Assignment Statements: examples

• General notation of a statement: {P} S {Q}

• More examples:

• x = 4*y+5 { x>13 }

• X = y-3*6 { x>-5 }

• X = 2*y+3*x { x>10}

106Chapter 3: Semantics

Assignment Statements

• An assignment with a precondition and a
postcondition is a theorem.

• If the assignment axiom, when applied to the
postcondition and the assignment statement, produces
the given precondition, the theorem is proved.

• Example:
{x > 5} x = x-3 {x>0}

Using the assignment axiom on
x = x-3 {x>0}
{x > 3}

{x > 5} implies {x > 3}

107Chapter 3: Semantics

Sequences

• The weakest precondition for a sequence
cannot be described by an axiom (only with
an inference rule)

• It depends on the particular kinds of statements in
the sequence.

• Inference rule:
• The precondition of the second statement is

computed.
• This is used as the postcondition of the first

statement.
• The precondition of the first element is the

precondition of the whole sequence.

108Chapter 3: Semantics

Sequences: examples

• Example:
y = 3*x+1;
x = y+3;
{x < 10}
Precondition of last assignment statement
y < 7

Used as postcondition of the first statement
3*x+1 < 7
x < 2

• Other example:
a = 3*(2*b+a);
b = 2*a -1
{ b > 5 }

19

109Chapter 3: Semantics

Selection

• Inference rule:
• Selection statement must be proven for

both when the Boolean control expression
is true and when it is false.

• The obtained precondition should be used
in the precondition of both the then and the
else clauses.

110Chapter 3: Semantics

Selection: example
• Example:

if (x > 0)
y = y-1

else y = y+1
{y > 0}

Axiom for assignment on the “then” clause
y = y-1 {y > 0}
y-1 > 0
y > 1

Same axiom to the “else” clause
y = y+1 {y > 0}
y+1 > 0
y > -1

But {y > 1}⇒ {y > -1}
Precondition of the whole statement: {y > 1}

111Chapter 3: Semantics

Evaluation

• Advantages:
• Can be very abstract.
• May be useful in program correctness proofs.
• Solid theoretical foundations.

• Disadvantages:
• Predicate transformers are hard to define.
• Hard to give complete meaning.
• Does not suggest implementation.

• Uses:
• Semantics of Pascal.
• Reasoning about correctness.

Chapter 3

Denotational Semantics

113Chapter 3: Semantics

Dynamic Semantics

A third way to view the semantics of a
programming language is to define the
meaning of each type of statement that
occurs in the (abstract) syntax as a state-
transforming mathematical function.
n The meaning of a program can be expressed

as a collection of functions operating on the
program state.

n This approach is called denotational
semantics.

114Chapter 3: Semantics

Denotational Semantics

Most rigorous, abstract, and widely known
method.

Based on recursive function theory.
Originally developed by Scott and Strachery
(1970).

Key idea: define a function that maps a program
(a syntactic object) to its meaning (a semantic
object).
n It is difficult to create the objects and mapping

functions.

20

115Chapter 3: Semantics

Denotational vs. Operational

Denotational semantics is similar to high-
level operational semantics, except:
n Machine is gone.
n Language is mathematics (lambda calculus).

Differences:
n In operational semantics, the state changes

are defined by coded algorithms for a virtual
machine

n In denotational semantics, they are defined by
rigorous mathematical functions.

116Chapter 3: Semantics

Denotational Semantics: evaluation

Advantages:
n Compact and precise, with solid mathematical

foundation.
n Provides a rigorous way to think about programs.
n Can be used to prove the correctness of programs.
n Can be an aid to language design.

Disadvantages:
n Requires mathematical sophistication
n Hard for programmers to use.

Uses:
n Semantics for Algol 60
n Compiler generation and optimization

117Chapter 3: Semantics

Summary

Each form of semantic description has its
place:
n Operational

Informal descriptions
Compiler work

n Axiomatic
Reasoning about particular properties
Proofs of correctness

n Denotational
Formal definitions
Probably correct implementations

