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Introduction

Language implementors
n Understand how all the constructs of the 

language are form and their intended effect 
when executed.

Language users
n Determine how to encode a possible solution 

of a problem (program) using the reference 
manual of the programming language.

Less knowledge of how to correctly define 
the semantics of a language.
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Introduction

Well-designed programming language
n Semantics should follow directly from syntax.
n Form of a statement should strongly suggest 

what the statement is meant to accomplish.
Definition of a programming language
n Complete: semantics and syntax are fully 

defined.
A language should provides a variety of 

different constructs, each one with a 
precise definition. 
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Introduction

Language manuals
n Definition of semantics is given in ordinary 

natural language.

n Construct
Syntax: a rule (or set of rules) from a BNF or 
other formal grammar.
Semantics: a few paragraphs and some 
examples.
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Introduction

Natural language description
n Ambiguous in its meaning 

Different readers come away with different 
interpretations of the semantics of a language 
construct. 

A method is needed for giving a 
readable, precise, and concise definition 
of the semantics of an entire language.
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Static Semantics

BNFs cannot describe all of the syntax of 
programming languages. 
n Some context-specific parts are left out. 

Is there a form to generate L={anbncn}
using a context-free grammar or a BNF?
An attempt:  

<string> ::= <aseq>  <bseq> <c seq>
<a seq> ::= a | <aseq> a
<b seq> ::= b | <bseq> b
<c seq> ::= c | <c seq> c

L’= {akbmcn | k=1, m=1, n=1}
No context-free grammar generates L
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Static Semantics

Some problems have nothing to do with 
“meaning” in the sense of run-time behavior
n They are concern about the legal form of the 

program.
n Static semantics refers to type checking and resolving 

declarations.
n Examples:

All variables must be declared before they are referenced
Ada: the name on the end of a procedure must match the 
procedure’s name
Both sides of an assignment must be of the same type.
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Static Semantics

Earliest attempts to add semantics to a 
programming language 
Add extensions to the BNF grammar 
that defined the language. 
n Given a parse tree for a program, 

additional information could be extracted 
from that tree. 
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Attribute Grammars: Basic 
Concepts

A context-free grammar extended to provide 
context-sensitivity information by appending 
attributes to each node of a parse tree.
Each distinct symbol in the grammar has 
associated with it a finite, possibly empty, set of 
attributes.
n Each attribute has a domain of possible values.
n An attribute may be assigned values from its domain 

during parsing.
n Attributes can be evaluated in assignments and 

conditions.
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Attribute Grammars: Generalities

Two classes of attributes:
n Synthesized attribute

Gets its value from the attributes attached to its 
children (subtree below the node). 
Used to pass semantic information up a parse 
tree.

n Inherited attribute
Gets its value from the attributes attached to the 
parent (subtree above the node). 
Used to pass semantic information down and 
across a tree.
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Attribute Grammars: Parse Tree

t

S

A

inherited

synthesized
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Attribute Grammar Definition

Associate some functions to compute the 
value of the attributes with each 
production in the grammar.
These local definitions associated with 
each production of the grammar define 
the values of the attributes for all parse 
trees. 
Given the definitions and a parse tree, 
algorithms exist to compute the attributes 
of all the nodes in the three.
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Attribute Grammars

Starting with the underlying context-free 
grammar G=<N,T,P,S>
For every production p in P
n Number of terminal and nonterminal symbols 

in string a : n(p). 
If a is the empty string, then n(p)=0. 
Sometimes each symbol of a production will be 
considered individually. 
n For all production p∈ P :  A? a or p0? p1,p2,…pn (p)
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Attribute Grammars

Augment the context-free grammar by 
attributes and semantic rules.
Set of attributes: At. 
n For each attribute a∈At: associate a set of 

values Domain(a).

n An attribute is just a name for a set of values

Set of attributes: two disjoint classes: 
n Inherited attributes In and the synthesized 

attributes Syn (At=In∪ Syn and In∩ Syn=∅). 
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Attribute Grammars: attributes

There is a set of attributes At(x)⊂At to 
every grammar symbol x∈N∪T 
n At(x) can be seen as additional information 

about the symbol x. 
Set
n In(x) = { a∈At(x) | a∈ In } 
n Syn(x) = { a∈At(x) | a∈ Syn }
n Requirements:

In(S)= ∅ (start symbol can inherit no information)
For all t∈T, Syn(t)= ∅ (there is no structure beneath a 
terminal from which to synthesize information)  
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Same attribute can be associated with different 
symbols appearing in the same grammar rule.
n Example: S? AB, all could inherit attribute int

associated to them: In(S)=In(A)=In(B)={int}. 
n It is impossible to consider the set of attributes 

associated with all the symbols of a production 
without losing track of which attributes appear more 
than once. 

n More confusing: productions that have a nonterminal
appearing more than once, as in S? ASA. 

Attribute Grammars: rules
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Attribute Grammars: attribute 
occurrences

Attribute occurrenceof a rule p is an ordered 
pair of attributes and natural number <a,j>
representing the attribute a at position j in 
production p.
n Particular rule p∈P an attribute occurrence at j will 

be written pj.a. 
n Set of attribute occurrences for a production p is 

defined: AO(p) = { pj.a | a∈At(pj), 0≤ j ≤ n(p) }
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Attribute Grammars: attribute 
occurrences

Set of attribute occurrences for a rule is 
divided into two disjoint subsets.
n Defined occurrences for a production p:

DO(p) = { p0.s | s∈ Syn(p0)} ∪ { pj .i | i∈In(p j), 1≤ j  ≤ n(p) }
In a parse tree, the set UO(p) represents the information 
flowing into the node of the parse tree labeled p0

n Used occurrences for a production p:
UO(p) = { p0.i | i∈In(p0)} ∪ { pj .s | s∈Syn(p j), 1≤ j  ≤ n(p) }
In a parse tree, the set DO(p) represents the information 
flowing out flowing into the node of the parse tree labeled p0
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Attribute Grammars: flow of 
attribute occurrences

subtree
above S

subtree
below A

subtree
below B

S

A B

In(S) Syn(S)

In(B) Syn(B)In(A) Syn(A)

Rule: S? AB
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Attribute Grammars: used attribute 
occurrences

Used attribute occurrences (the 
information flowing in) are In(S), Syn(A), 
and Syn(B). 

Syn(S)

In(S) In(A) In(B)

synthesized

inherited

S A B

Syn(B)Syn(A)
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Attribute Grammars: defined 
attribute occurrences

Defined attribute occurrences (the 
information flowing out) are Syn(S), In(A), 
and In(B). 

Syn(S)

In(S) In(A)

synthesized

inherited

S A B

Syn(B)Syn(A)

In(B)
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Semantic function fp,v. 
n For every attribute occurrence v∈DO(p)
n Defined values for attributes in DO(p) in terms of the 

values of the attributes in UO(p).
n Produces a value for the attribute a from values of the 

attributes of UO(p).
n There is no requirement that all the attribute 

occurrences of UO(p) are used by fp,v. 
n Dependency set (Dp,v.) of fp,v: is the set of attribute 

occurrences used (subset of UO(p))
n Dp,v could be empty

Value of the attribute: computed without any other additional 
information. The function fp ,v is a constant.

Attribute Grammars: semantic 
function

24Chapter 3: Semantics

Attribute Grammar

An attribute grammar as a context-free 
grammar with two disjoint sets of 
attributes (inherited and synthesized) 
and semantic functions for all defined 
attribute occurrences.
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Attribute Grammar: binary digits 
example

Context-free grammar that generates strings 
of binary digits.

p: B → D
q: B → D B
r: D → 0
s: D → 1

Attributes:
n val: accumulate the value of the binary numbers
n pow and pos: keep track of the position and the 

power of 2.

synthesized

inherited

pos, val val

pow

B D
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Attribute Grammar: binary digits 
example

Compute the defined and the used occurrences for 
each production
The defined occurrences is the set of synthesized 
attributes of the LHS plus the set of inherited 
attributes of all the grammar symbols of the RHS.

p

q

r

s

Defined Used

B.pos, B.val, D.pow

B1.pos, B1.val, D.pow

D.val

D.val

D.val

D.pow

D.pow

B2.pos, B2.val, D.val
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Attribute Grammar: binary digits 
example

Function definitions for the eight defined attribute occurrences.

p:   B → D
B.pos := 1
B.val := D.val
D.pow := 0

q:   B1 → D B2
B1.pos := B2.pos+1
B1.val := B2.val+D.val
D.pow := B2.pos

r:   D → 0
D.val := 0

s:   D → 1
D.val := 2D.pow
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Attribute Grammar: binary digits 
example

pos val

pos val

pos val

pos valpos val

pos val

pos val

pos val

B

D B

D
B

D B

D

1

0

1

0

3 8

4 10

2 0

3 2

1 2

2 2

1 0

0 0

Evaluation of parse tree for 1010
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Dynamic Semantics

Semantics of a programming language is 
the definition of the meaning of any 
program that is syntactically valid.
intuitive idea of programming meaning: 
“whatever happens in a (real or model) 
computer when the program is executed. ”
n A precise characterization of this idea is 

called operational semantics.
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Dynamic Semantics

Another way to view programming 
meaning is to start with a formal 
specification of what a program is 
supposed to do, and then rigorously 
prove that the program does that by 
using a systematic series of logical 
steps.
n This approach evokes the idea of 

axiomatic semantics.
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Dynamic Semantics

A third way to view the semantics of a 
programming language is to define the 
meaning of each type of statement that 
occurs in the (abstract) syntax as a state-
transforming mathematical function. 
n The meaning of a program can be expressed 

as a collection of functions operating on the 
program state. 

n This approach is called denotational
semantics.
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Dynamic Semantics: advantages 
and disadvantages

Operational Semantics
n Advantage of representing program 

meaning directly in the code of a real (or 
simulated) machine. 

n Potential weakness, since the definition of 
semantics is confined to a particular 
architecture (either real or abstract).

Virtual machine also needs a semantic 
description, which adds complexity and can 
lead to circular definitions.
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Dynamic Semantics: advantages 
and disadvantages

Axiomatic semantics is useful in the exploration 
of formal properties of programs. 
n Programmers who must write provably correct 

programs from a precise set of specification are 
particularly well -served by this semantic style.

Denotational semantics is valuable because its 
functional style brings the semantic definition of 
a language to a high level of mathematical 
precision 
n Language designers obtain a functional definition of 

the meaning of each language construct that is 
independent of any particular machine architecture.
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Operational Semantics

Provides a definition of program meaning 
by simulating the program’s behavior on a 
machine model that has a very simple 
(through not necessarily realistic) 
instruction set and memory organization.
Definition of the virtual computer can be 
described using an existing programming 
language or a virtual computer (idealized 
computer).
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Operational Semantics: process
Change in the state of the machine (memory, 
registers, etc) defines the meaning of the 
statement.

The operational semantics of a high-level 
language can be described using a virtual 
computer.
n A pure hardware interpreter is too expensive.
n A pure software interpreter has also problems:

Machine-dependent
Difficult to understand

n A better alternative: a complete computer simulation.
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Operational Semantics: process

The process:
n Identify a virtual machine (an idealized 

computer).

n Build a translator (translates source code to 
the machine code of an idealized computer).

n Build a simulator for the idealized computer.

Operational semantics is sometimes called 
transformational semantics, if an existing 
programming language is used in place of 
the virtual machine.
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Operational Semantics: automaton

Automaton could be used as a virtual 
machine:
n More complex that the simple automata 

models used in the study of syntax and parsing
Automaton has
n Internal state that corresponds to the internal 

state of the program when it its executing;
The state contains all the values of the variables, 
the executable program, and various system-
defined housekeeping data structures.
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Operational Semantics: automaton
n A set of formally defined operations used to 

specify how the internal state of the automaton 
may change, 

Corresponds to the execution of one instruction in 
the program. 

n A second part of the definition specifies how a 
program text is translated into an initial state 
for the automaton

From this initial state, the rules defining the 
automaton specify how the automaton moves from 
state to state until a final state is reached. 
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Operational Semantics: process

Example:

Pascal statement

for i := x to y do
begin

…
end 

Operational Semantics

i := x
loop: if i > y goto out

…
i := i + 1
goto loop

out: …

Operational Semantics
(lower level)

mov i, r1
mov y, r2
jmpifless(r2,r1,out) 
…
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Operational Semantics: evaluation

Advantages:
n May be simple, intuitive for small examples/
n Good if used informally.
n Useful for implementation.

Disadvantages:
n Very complex for large programs.
n Depends on programming languages of lower levels 

(not mathematics)

Uses:
n Vienna Definition Language (VDL) used to define PL/I 

(Wegner, 1972).
n Compiler work
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Axiomatic Semantics

Programmers: confirm or prove that a program 
does what it is supposed to do under al 
circumstances
Axiomatic semantics provides a vehicle for 
developing proofs that a program is “correct”.
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Axiomatic Semantics

• Example: prove mathematically that the 
C/C++ function Max actually computes as 
its result the maximum of its two 
parameter: a and b.

• Calling this function one time will obtain an 
answer for a particular a and b, such as 8 
and 13. But the parameters a and b define a 
wide range of integers, so calling it several 
times with all the different values to prove its 
correctness would be an infeasible task. 
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Axiomatic Semantics

• Construct a proof to prove the correctness 
of a program

• The meaning of a statement is defined by the 
result of the logical expression that precedes 
and follows it.

• Those logical expressions specifies constraints 
on program variables.

• The notation used to describe constraints is 
predicate calculus .
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Axiomatic Semantics: assertions

• The logical expressions used in axiomatic 
semantics are called assertions.

• Precondition: an assertion immediately 
preceding a statement that describes the 
constraints on the program variables at that 
point.

• Postcondition: an assertion immediately 
following a statement that describes the 
new constraints on some variables after the 
execution of the statement.
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Axiomatic Semantics: assertions

• Example
sum = 2 * x + 1 { sum > 1 }

• Preconditions and postconditions are enclosed 
in braces

• Possible preconditions:
{ x > 10 }

{ x > 50 }

{ x > 1000 }
{ x > 0 }
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Axiomatic Semantics: weakest 
precondition

• It is the least restrictive precondition that will 
guarantee the validity of the associated 
postcondition.

• Correctness proof of a program can be 
constructed if the weakest condition can be 
computed from the given postcondition.

• Construct preconditions in reverse:
• From the postcondition of the last statement of the 

program generate the precondition of the previous 
statement.

• This precondition is the postcondition of the previous 
statement, and so on.
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Axiomatic Semantics: weakest 
precondition

• The precondition of the first statement states the 
condition under which the program will compute the 
desired results.

• Correct program: If the precondition of the first 
statement is implied by the input specification of the 
program.

• The computation of the weakest precondition can 
be done using:

• Axiom: logical statement that is assumed to be true.
• Inference rule: method of inferring the truth of one 

assertion on the basis of the values of other 
assertions.
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Axiomatic Semantics: assignment 
statements

• Let x=E be a general assignment 
statement and Q its postconditions. 

• Precondition: P=Qx→E
• P is computed as Q with all instance of x 

replaced by E
• Example

a = b/2-1 {a<10}
Weakest precondition: substitute b/2-1 in the postcondition {a<10}

b/2-1 < 10
b < 22
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Axiomatic Semantics: assignment 
statements

• General notation of a statement: {P} S {Q}
• General notation of the assignment 

statement: {Qx→E}x = E {Q}
• More examples:

x = 2*y-3 {x>25} 2*y-3 > 25
y > 14

x = x+y-3 {x>10} x+y-3 > 10
y > 13-x
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Axiomatic Semantics: assignment 
statements

• An assignment with a precondition and a 
postcondition is a theorem.

• If the assignment axiom, when applied to the 
postcondition and the assignment statement, produces 
the given precondition, the theorem is proved.

• Example:
{x > 5} x = x-3 {x>0}

Using the assignment axiom on
x = x-3 {x>0}
{x > 3}

{x > 5} implies  {x > 3}
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Axiomatic Semantics: sequences

• The weakest precondition cannot be 
described by an axiom (only with an inference 
rule)

• It depends on the particular kinds of statements in 
the sequence.

• Inference rule:
• The precondition of the second statement is 

computed. 
• This is used as the postcondition of the first 

statement.
• The precondition of the first element is the 

precondition of the whole sequence.
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Axiomatic Semantics: sequences

• Example:
y = 3*x+1;
x = y+3;

{x < 10}
Precondition of last assignment statement
y < 7

Used as postcondition of the first statement
3*x+1 < 7
x < 2
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Axiomatic Semantics: selection

• Inference rule:
• Selection statement must be proven for 

both when the Boolean control expression 
is true and when it is false.

• The obtained precondition should be used 
in the precondition of both the then and the 
else clauses.
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Axiomatic Semantics: selection
• Example:

if (x > 0)
y = y-1

else y = y+1
{y > 0}

Axiom for assignment on the “then” clause
y = y-1 {y > 0}
y-1 > 0 
y > 1

Same axiom to the “else” clause
y = y+1 {y > 0}
y+1 > 0
y > -1

But {y > 1}⇒ {y > -1} 
Precondition of the whole statement: {y > 1}
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Axiomatic Semantics: evaluation

• Advantages:
• Can be very abstract.
• May be useful in program correctness proofs. 
• Solid theoretical foundations.

• Disadvantages:
• Predicate transformers are hard to define.
• Hard to give complete meaning.
• Does not suggest implementation.

• Uses:
• Semantics of Pascal.
• Reasoning about correctness.
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Denotational Semantics

Most rigorous, abstract, and widely known 
method.

Based on recursive function theory.
Originally developed by Scott and Strachery 
(1970).

Key idea: define a function that maps a program 
(a syntactic object) to its meaning (a semantic 
object).
n It is difficult to create the objects and mapping 

functions.

57Chapter 3: Semantics

Denotational vs. Operational

Denotational semantics is similar to high-
level operational semantics, except:
n Machine is gone.
n Language is mathematics (lambda calculus).

Differences:
n In operational semantics, the state changes 

are defined by coded algorithms for a virtual 
machine

n In denotational semantics, they are defined by 
rigorous mathematical functions.
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Denotational Semantics: evaluation

Advantages:
n Compact and precise, with solid mathematical 

foundation.
n Provides a rigorous way to think about programs.
n Can be used to prove the correctness of programs.
n Can be an aid to language design.

Disadvantages:
n Requires mathematical sophistication
n Hard for programmers to use.

Uses:
n Semantics for Algol 60
n Compiler generation and optimization
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Summary

Each form of semantic description has its 
place:
n Operational

Informal descriptions
Compiler work

n Axiomatic
Reasoning about particular properties
Proofs of correctness

n Denotational
Formal definitions
Probably correct implementations

Chapter 3

Attribute Grammars
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Meaning

What is the semantics or meaning of the 
expression: 2+3
n Its value: 5

n Its type (type checker): int
n A string (infix-to-postfix translator): + 2 3

The semantics of a construct can be any 
quantity or set of quantities associated 
with the construct. 
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Attribute Grammars

Formalism for specifying semantics based on 
context-free grammars (BNF).
Used to solve some typical problems:
n Type checking and type inference
n Compatibility between procedure definition and call.

Associate attributes with terminals and 
nonterminals.

Associate semantic functions with productions.
n Used to compute attribute values.
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Attributes

A quantity associated with a construct.
n X.a for attribute a of X (X is either a 

nonterminal or a terminal ).

Attributes have values:
n Each occurrence of an attribute of an attribute 

in a parse tree has a value.

Grammar symbols can have any number 
of attributes.
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Example: Evaluating arithmetic 
expressions

<exp> ::= <exp> + <term>

<exp> ::= <exp> – <term>
<exp> ::= <term>

<term> ::= <term> * <factor>

<term> ::= <term> div <factor>
<term> ::= <factor>

<factor> ::= ( <exp> )
<factor> ::= num 
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Example: 7*5
val is the value of the digit 
At the root of the parse tree: 
n <exp>.val has value 35

At the bottom-left:
n <num>.val has value 7

Attributes for terminal symbols:
n come with the symbol 
n the value of the token

Attribute values for nonterminals:
n Defined by semantic rules 

Attached to productions

Decorated parse tree 
n Attributes attached to the nodes

<exp>. val = 35

<term>. val = 7 <factor>.val = 5

<term>. val = 35

<num>.val = 5<factor>.val = 7

<num>.val = 7

*
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Attributes

Syntax symbols can return values (sort of output 
parameters)
n Digits can return its numeric value 

digit <?val>

Nonterminal symbols can have also input 
attributes.
n Parameters that are passed from the “calling” 

production.
number <?base, ?val>
n base: number base (e.g. 10 or 2 or 16)
n val: returned value of the number
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Information Flow

inherited

synthesized

... ...

computed

available
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Synthesized Attributes 

The values is computed from the values of 
attributes of the children.
Pass information up the parse tree 
(bottom-up propagation).
S-attribute grammar uses only synthesized 
attributes
Example:
n Value of expressions
n Types of expressions
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Inherited Attributes 

The values is computed from the values of 
attributes of the siblings and parent.
Pass information down the parse tree (top-
down propagation) or from left siblings  to 
the right siblings
Example:
n Type information
n Where does a variable occur? LHS or RHS
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Example 1
Translating decimal numbers between 0 
and 99 into their English phrases.

number phrase
0 zero

10 ten
19 nineteen
20 twenty
31 thirty one

n Translations are based on each digit
31: thirty, the translation of 3 on the left, and one,
the translation of 1 on the right.
Exceptions:
n 30 is thirty , not thirty zero
n 19: is nineteen, not ten nine
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Example 1: Syntax

<number> ::= <digit>
<number> ::= <digit> <set_digit>
<set_digit> ::= <digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9

<N> ::= <D>
<N> ::= <D> <S>
<S> ::= <D>
<D> ::= 0|1|2|3|4|5|6|7|8|9 
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Attribute Occurrences

Same attribute can be associated with different 
symbols appearing in the same grammar rule.
Attribute occurrenceof a rule p is an ordered 
pair of attributes and natural number <a,j>
representing the attribute a at position j in 
production p.
Two disjoint subsets:
n Defined occurrences for a production:

The information flowing into a node of the parse tree.
n Used occurrences for a production

The information flowing out a node of the parse tree.
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Rule: S? AB

• Set of inherited attributes of all the grammar symbols on 
the LHS plus the set of synthesized attributes of the RHS.

Used Attribute Occurrences

Syn(S)

In(S) In(A) In(B)

synthesized

inherited

S A B

Syn(B)Syn(A)
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Rule: S? AB

• Set of synthesized attributes of all the grammar symbols 
on the LHS plus the set of inherited attributes of the RHS.

Defined Attribute Occurrences

Syn(S)

In(S) In(A)

synthesized

inherited

S A B

Syn(B)Syn(A)

In(B)
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Semantic Function

Define a semantic function for every 
defined occurrence in terms of the values 
of used occurrences.

… …

Rule 1

Rule 2

Defined Used

… …

Function definitions
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Example 1: Semantics
<N> ::= <D> N.trans := spell(D.val)
<N> ::= <D> <S> S.in ::= D.val

N.trans ::= S.trans
<S> ::= <D> S.val := if D.val = 0 then decade(S.in)

else if S.in ≤ 1 then spell(10*S.in +D.val)
else decade(P.in) || spell(D.val)

<D> ::= 0 <D>.val := 0
…

<D> ::= 9 <D>.val := 9

Functions spell and decade: 
spell(1) = one, spell(2) = two, …, spell(19) = nineteen

decade(0) = zero, decade(1) = ten, …, decade(9) = ninety
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Example 2: Syntax

<binary> ::= <digit>
<binary> ::= <digit> <binary>
<digit> ::= 0
<digit> ::= 1

<B> ::= <D>
<B> ::= <D> <B>
<D> ::= 0
<D> ::= 1

Decimal value of a binary number
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Example 2: Semantics

<B> ::= <D> B.pos := 1
B.val := D.val
D.pow := 0

<B1> ::= <D> <B2> B1.pos := B2.pos + 1
B1.val := B2.val + D.val
D.pow := B2.pos

<D> ::= 0 D.val := 0
<D> ::= 1 D.val := 2D.pow
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Example 2: Sample Parse Tree

pos val

pos val

pos val

pos valpos val

pos val

pos val

pos val

B

D B

D
B

D B

D

1

0

1

0

3 8

4 10

2 0

3 2

1 2

2 2

1 0

0 0

Evaluation of parse tree for 1010
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Example 3: Syntax

<assign> ::= <var> = <expr>
<expr> ::= <var> + <var>
<expr> ::= <var>
<var> ::= X | Y | Z

<A> ::= <V> = <E>
<E> ::= <V> + <V>
<E> ::= <V>
<V> ::= X | Y | Z

Simple Assignment Statements
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Example 3: Semantics

<A> ::= <V> = <E> E.exp := V.act
<E> ::= <V> + <V> E.act = if (V1.act = int) and

V2.act := int) then int
else real

<E> ::= <V> E.act := E.exp
<V> ::= X | Y | Z V.act = …

Variables can be either real or integer.
Both sides of an assignment different: type = real
Same type on both sides of an assignment
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Attribute Grammars: Summary

An attribute grammar is a context-free 
grammar with two disjoint sets of 
attributes (inherited and synthesized) 
and semantic functions for all defined 
attribute occurrences.
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Attribute Grammar: Process

1. EBNF
2. Attributes

• Identify the parameters of the syntax 
symbols.
§ Output attributes (synthesized) yield results.
§ Input attributes (inherited) provide context.

3. Semantic functions

Chapter 3

Operational Semantics
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Dynamic Semantics

Semantics of a programming language is 
the definition of the meaning of any 
program that is syntactically valid.
Intuitive idea of programming meaning: 
“whatever happens in a (real or model) 
computer when the program is executed. ”
n A precise characterization of this idea is 

called operational semantics.
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Operational Semantics: 
advantages and disadvantages
Operational Semantics
n Advantage of representing program 

meaning directly in the code of a real (or 
simulated) machine. 

n Potential weakness, since the definition of 
semantics is confined to a particular 
architecture (either real or abstract).

Virtual machine also needs a semantic 
description, which adds complexity and can 
lead to circular definitions.
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Operational Semantics

Provides a definition of program meaning by 
simulating the program’s behavior on a 
machine model that has a very simple (through 
not necessarily realistic) instruction set and 
memory organization.
Definition of the virtual computer can be 
described using an existing programming 
language or a virtual computer (idealized 
computer).
Change in the state of the machine (memory, 
registers, etc) defines the meaning of the 
statement.
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Process

The process:
n Identify a virtual machine (an idealized 

computer).

n Build a translator (translates source code to 
the machine code of an idealized computer).

n Build a simulator for the idealized computer.

Operational semantics is sometimes called 
transformational semantics, if an existing 
programming language is used in place of 
the virtual machine.
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Example

Pascal statement

for i := x to y do
begin

…
end 

Operational Semantics

i := x
loop: if i > y goto out

…
i := i + 1
goto loop

out: …

Operational Semantics
(lower level)

mov i, r1
mov y, r2
jmpifless(r2,r1,out) 
…
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Notation

State of a program σ:
n A set of pairs <v,val> that represent all active variables 

and their current assigned values at some stage during 
the program’s execution.

σ = { <x,1>, <y,2>, <z,3> }
After y = 2 * z + 3 σ = { <x,1>, <y,9>, <z,3> }
After w = 4 σ = { <x,1>, <y,9>, <z,3>, <w,4> }

State transformation of these type of assignments 
can be represented by a function called overriding 
union U 
n σ1 = { <x,1>, <y,2>, <z,3> }
n σ2 = { <y,9>, <w,4> }
n σ1 U σ2 = { <x,1>, <y,9>, <z,3>, <w,4> } 
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Notation

Execution rule:
premise

conclusion

n “If the premise is true, then the conclusion is 
true”
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Examples

Addition of two expressions
σ(e1) ⇒ v1 σ(e1) ⇒ v1

σ(e1 + e2) ⇒ v1 + v2
Assignment statement (s.target = s.source)

σ(s.source) ⇒ v
σ(s.target = s.source) ⇒ σ U { <s.target,v> }
n Suppose: assignment x = x +1, current state x=5

σ(x) ⇒ 5 σ(1) ⇒ 1
σ(x+1) ⇒ 6 

σ(x = x+1) ⇒ {…, <x,5>, …} U { <x,6> }
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Examples

Conditionals (s = if (s.text) s.then else s.else)

σ(s.test) ⇒ true σ(s.then) ⇒ σ1

σ(if(s.test)s.then else s.else) ⇒ σ1

σ(s.test) ⇒ false σ(s.else) ⇒ σ1

σ(if(s.test)s.then else s.else) ⇒ σ1
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Examples

Loops (s = while (s.test) s.body )

σ(s.test) ⇒ true  σ (s.body) ⇒ σ1 σ1(while(s.test)s.body) ⇒ σ1

σ(while (s.text) s.body) ⇒ σ1

σ(s.test) ⇒ false
σ( while (s.text) s.body) ⇒ σ
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Evaluation

Advantages:
n May be simple, intuitive for small examples/
n Good if used informally.
n Useful for implementation.

Disadvantages:
n Very complex for large programs.
n Depends on programming languages of lower levels 

(not mathematics)

Uses:
n Vienna Definition Language (VDL) used to define PL/I 

(Wegner, 1972).
n Compiler work

Chapter 3

Axiomatic Semantics
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Dynamic Semantics

Another way to view programming 
meaning is to start with a formal 
specification of what a program is 
supposed to do, and then rigorously 
prove that the program does that by 
using a systematic series of logical 
steps.
n This approach evokes the idea of 

axiomatic semantics.
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Axiomatic Semantics

Programmers: confirm or prove that a 
program does what it is supposed to 
do under al circumstances
Axiomatic semantics provides a 
vehicle for developing proofs that a 
program is “correct”.
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Axiomatic Semantics

• Example: prove mathematically that the 
C/C++ function Max actually computes as 
its result the maximum of its two 
parameter: a and b.

• Calling this function one time will obtain an 
answer for a particular a and b, such as 8 
and 13. But the parameters a and b define a 
wide range of integers, so calling it several 
times with all the different values to prove its 
correctness would be an infeasible task. 
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Assertions

• The logical expressions used in axiomatic 
semantics are called assertions.

• Precondition: an assertion immediately 
preceding a statement that describes the 
constraints on the program variables at that 
point.

• Postcondition: an assertion immediately 
following a statement that describes the 
new constraints on some variables after the 
execution of the statement.
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Assertions

• Example
sum = 2 * x + 1 { sum > 1 }

• Preconditions and postconditions are enclosed 
in braces

• Possible preconditions:
{ x > 10 }

{ x > 50 }

{ x > 1000 }
{ x > 0 }
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Weakest Precondition

• It is the least restrictive precondition that will 
guarantee the validity of the associated 
postcondition.

• Correctness proof of a program can be 
constructed if the weakest condition can be 
computed from the given postcondition.

• Construct preconditions in reverse:
• From the postcondition of the last statement of the 

program generate the precondition of the previous 
statement.

• This precondition is the postcondition of the previous 
statement, and so on.
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Weakest Precondition

• The precondition of the first statement states the 
condition under which the program will compute the 
desired results.

• Correct program: If the precondition of the first 
statement is implied by the input specification of the 
program.

• The computation of the weakest precondition can 
be done using:

• Axiom: logical statement that is assumed to be true.
• Inference rule: method of inferring the truth of one 

assertion on the basis of the values of other 
assertions.
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Assignment Statements

• Let x=E be a general assignment 
statement and Q its postconditions. 

• Precondition: P=Qx→E
• P is computed as Q with all instance of x 

replaced by E
• Example

a = b/2-1 {a<10}
Weakest precondition: substitute b/2-1 in the postcondition {a<10}

b/2-1 < 10
b < 22
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Assignment Statements: examples

• General notation of a statement: {P} S {Q}

• More examples:

• x = 4*y+5 { x>13 }

• X = y-3*6 { x>-5 }

• X = 2*y+3*x { x>10}
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Assignment Statements

• An assignment with a precondition and a 
postcondition is a theorem.

• If the assignment axiom, when applied to the 
postcondition and the assignment statement, produces 
the given precondition, the theorem is proved.

• Example:
{x > 5} x = x-3 {x>0}

Using the assignment axiom on
x = x-3 {x>0}
{x > 3}

{x > 5} implies  {x > 3}
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Sequences

• The weakest precondition for a sequence 
cannot be described by an axiom (only with 
an inference rule)

• It depends on the particular kinds of statements in 
the sequence.

• Inference rule:
• The precondition of the second statement is 

computed. 
• This is used as the postcondition of the first 

statement.
• The precondition of the first element is the 

precondition of the whole sequence.
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Sequences: examples

• Example:
y = 3*x+1;
x = y+3;
{x < 10}
Precondition of last assignment statement
y < 7

Used as postcondition of the first statement
3*x+1 < 7
x < 2

• Other example:
a = 3*(2*b+a);
b = 2*a -1
{ b > 5 }



19

109Chapter 3: Semantics

Selection

• Inference rule:
• Selection statement must be proven for 

both when the Boolean control expression 
is true and when it is false.

• The obtained precondition should be used 
in the precondition of both the then and the 
else clauses.
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Selection: example
• Example:

if (x > 0)
y = y-1

else y = y+1
{y > 0}

Axiom for assignment on the “then” clause
y = y-1 {y > 0}
y-1 > 0 
y > 1

Same axiom to the “else” clause
y = y+1 {y > 0}
y+1 > 0
y > -1

But {y > 1}⇒ {y > -1} 
Precondition of the whole statement: {y > 1}
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Evaluation

• Advantages:
• Can be very abstract.
• May be useful in program correctness proofs. 
• Solid theoretical foundations.

• Disadvantages:
• Predicate transformers are hard to define.
• Hard to give complete meaning.
• Does not suggest implementation.

• Uses:
• Semantics of Pascal.
• Reasoning about correctness.

Chapter 3

Denotational Semantics
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Dynamic Semantics

A third way to view the semantics of a 
programming language is to define the 
meaning of each type of statement that 
occurs in the (abstract) syntax as a state-
transforming mathematical function. 
n The meaning of a program can be expressed 

as a collection of functions operating on the 
program state. 

n This approach is called denotational
semantics.
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Denotational Semantics

Most rigorous, abstract, and widely known 
method.

Based on recursive function theory.
Originally developed by Scott and Strachery 
(1970).

Key idea: define a function that maps a program 
(a syntactic object) to its meaning (a semantic 
object).
n It is difficult to create the objects and mapping 

functions.
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Denotational vs. Operational

Denotational semantics is similar to high-
level operational semantics, except:
n Machine is gone.
n Language is mathematics (lambda calculus).

Differences:
n In operational semantics, the state changes 

are defined by coded algorithms for a virtual 
machine

n In denotational semantics, they are defined by 
rigorous mathematical functions.
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Denotational Semantics: evaluation

Advantages:
n Compact and precise, with solid mathematical 

foundation.
n Provides a rigorous way to think about programs.
n Can be used to prove the correctness of programs.
n Can be an aid to language design.

Disadvantages:
n Requires mathematical sophistication
n Hard for programmers to use.

Uses:
n Semantics for Algol 60
n Compiler generation and optimization
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Summary

Each form of semantic description has its 
place:
n Operational

Informal descriptions
Compiler work

n Axiomatic
Reasoning about particular properties
Proofs of correctness

n Denotational
Formal definitions
Probably correct implementations


