Chapter 2

History of Programming
Languages

Topics

@Early History: low level languages
@The 1950s: first programming languages

2The 1960s: an explosion in programming
languages

@The 1970s: back to simplicity
@Functional and logic programming
20bject-oriented programming

Chapter 2: History of Programming
Languages 2

History of Programming Languages

@The history of programming languages is
tied to the evolution of computers.
@Several hundred programming languages
and dialects since low-level programming
languages (1940s).
= Most have limited life span and utility.

= A few have enjoyed widespread success in one
or more application domain.

= Many have played an important role in
influencing the design of future languages

Chapter 2: History of Programming
anguages 3

Most Influential Programming
Languages

Chapter 2: History of Programming
Languages 4

Early History: Low Level
Languages

@ 1940s and early 1950s:
=« Computers: slow, unreliable, difficult to program
= Machine language
@ Programming was tedious and error-prone.
@ Programs were difficult to read (numeric codes for instructions)
and difficult to modify.
= Assembly language

@ Use symbols and mnemonics to express the underlying
machine code.

@ Highly machine dependent
@ Syntax: unlike natural language
= Goal: implement what was possible on the available
hardware.

Chapter 2: History of Programming
Languages 5

The 1950s: The First PLs
FORTRAN

@First high-level programming language.

@Developed between 1954-1957 by a
team at IBM lead by John Backus.

2“FORmula TRANSsIlating”

@Designed primarily for scientific and
computational programming (to express
mathematical formulas).

@Goal: to eliminate bookkeeping details
and repetitive planning.

Chapter 2: History of Programming
Languages 6




The 1950s: The First PLs
FORTRAN

@ Most features were new and become standard
in later languages.
= Array, loops controlled by an index variable, if
selection statement, do4oop statement, input-output
formatting.
& Some characteristics:
= Variable names could be up to 6 characters (Fortran
0 at most two).
= Spaces were ignored because they could be
confusing to the human typist (a coder wrote code
on paper and a typist punched the codes into cards)

Chapter 2: History of Programming
Languages

The 1950s: The First PLs
FORTRAN
= There were no data-typing statements (variables
whose name began with I, J, K, L, M, and N were
implicitly integer type, the other were implicitly
floating-point)
@ Fortran initiated the search for languages that
communicate with the computer at a high level,
a level closer to the way human think.
@ Fortran and its descendants (Fortran Il, IV, 77,
90, and 95) are still dominant in scientific
applications today.

= Their compilers are still among the most efficient
available because they produce very fast code.

Chapter 2: History of Programming
Languages 8

The 1950s: The First PLs
ALGOL 60

& ldea: design a universal language for
communicating programs among users and
to computers.

@ Developed by an international committee
between 1958 and 1960.

2 “ALGOrithmic Language”

= Initially called IAL (the International Algebraic
Language).

@ Goal: to provide a general, expressive
language for describing algorithms, both in
research and in practical applications.

Chapter 2: History of Programming
anguages

The 1950s: The First PLs
ALGOL 60
2ALGOL had a profound effect on

programming languages design.

= Most of the current imperative languages
are derivatives of ALGOL (Pascal, Ada, C,
MODULA-2, C, Java).

= Research papers today still often use
ALGOL or ALGOL-like syntax to describe
algorithms.

Chapter 2: History of Programming
Languages 10

The 1950s: The First PLs
ALGOL 60

@ Concepts introduced:
» Free-format.
Structured statements.
Type declarations for variables .

The concept of block was introduced: begin-end
blocks.

Procedures were allowed to be recursive.

Two different means of passing parameters to
subprograms: pass by value and pass by name.
Stack-dynamic array were allowed.

Chapter 2: History of Programming
Languages

The 1950s: The First PLs
ALGOL 60

@ Some firsts:
= The first time a language was designed by an
international group.
= The first language designed to be machine
independent.

= The first language whose syntax was formally
described using BNF notation.

2 ALGOL evolved:
= ALGOL 60>ALGOL W->ALGOL 68.

= ALGOLG68 had a long list of features: parallel computation, semaphores,
implementation-dependant constants, large collection of types (complex
numbers, bit patterns, long and short numbers, strings, and flexble
arrays), and case-statement.

Chapter 2: History of Programming
Languages 12




The 1950s: The First PLs
ALGOL 60

@ Genealogy:

Chapter 2: History of Programming
Languages 13

The 1950s: The First PLs
LISP

% First functional programming language.

% Intended to provide a tool for writing programs for
symbol manipulation and list processing in the field of
artificial intelligence.

% Developed by John McCarthy and his colleagues at MIT
in the late 1950s-early 1960s

2 “LISt Processor”

% Primarily data structure: list of symbols.

= Words in a sentence, a list of attributes, a payroll record, a
symbolic differential equation.

% Based of function application.

Chapter 2: History of Programming
Languages 14

The 1950s: The First PLs
LISP

& List: “nil” element and a pair element (a pair of
pointers, one to an element of the list and one to
the rest of the list).

@ Data and programs are represented as lists.

@ Pioneered general notions of computation:
garbage collection.

@Lisp and its variants (MACLISP, UTLISP,
COMMONLISP, SCHEME, etc) are still in use
today in many artificial intelligence applications.

Chapter 2: History of Programming
anguages 15

The 1950s: The First PLs
COBOL
@ Developed by the U.S. Department of Defense
in 1960.
@ Goal: to obtain a common programming
language for data processing applications.
@ “COmmon Business Oriented Language “
@ COBOL had the opposite effect than ALGOL 60
= Quickly adopted by banks and corporations for a
large-scale record-keeping and other business
applications.
= It had little effect on the design of subsequent
languages, except PL/I.

Chapter 2: History of Programming
Languages 16

The 1950s: The First PLs
COBOL

% Major goal: to have a more English-like programming
language suitable for business data processing.
= Uses English as a basis for its syntax.
= Programs are constructed out of clauses, sentences, and
paragraphs
= Programs tend to be more wordy than comparable programs in
other languages.
& Problems:
= The design was supposed to permit nonprogrammers to read

and understand programs
@ It only complicated the syntax without providing readability.

= Complex algorithms are extremely difficult to program.

Chapter 2: History of Programming
Languages 17

The 1950s: The First PLs
APL

@ Designed by Kenneth Iverson between 1959-
1960s at Harvard University.

@ Designed to describe computer architecture
= Influenced by the field of linear algebra
= It was not intended for implementation

@ Goal: to facilitate the rapid programming of
matrix algebraic and other mathematical
computations.

2 “A Programming Language “

Chapter 2: History of Programming
Languages 18




The 1950s: The First PLs
APL

@ APL is also functional in style and has a large
powerful set of operators that allow most
iterations to be performed completely automatic.
= Programs are extremely difficult to read and

maintain.

& Itis still used today and it has not changed a lot
over all this years.

& A descendent of APL is the language J.

Chapter 2: History of Programming
Languages 19

The 1950s: The First PLs

@ Programming languages developed rapidly
in a short period of time 1954-1960.

@ Three major imperative programming
languages (FORTRAN, COBOL, ALGOL 60)
= All three, in modified form, still in use today.

@ Functional programming began (LISP) which
is in use today.

Chapter 2: History of Programming
Languages 20

The 1960s: Explosion of PLs

& After success of initial programming languages,
everyone wanted to design their own language.

@ Hundreds of special-purpose programming
languages
= Designers particular interests or concerns.
= Most have vanished.

= Only a few had significant effect on development of
programming languages.

Chapter 2: History of Programming
anguages 21

The 1960s: Explosion of PLs
PL/I

% Designed by IBM between 1963 and 1964.

% Intended to use a new family of computers (the 360
family).

% Goal: to combine all features of FORTRAN, COBOL,
and ALGOL 60 and add concurrency and exception
handling as well.

@ Failure:

= Translators: difficult to write, slow, huge and unreliable

= Language: difficult to learn and error prone to use, due to the
large number of unpredictable interactions among language
features.

% This language attempted to do too much, provide to
many features, and satisfy too many users.

Chapter 2: History of Programming
Languages 22

The 1960s: Explosion of PLs
PL/I

@ Genealogy:

Chapter 2: History of Programming
Languages 23

The 1960s: Explosion of PLs
SNOBOL
@ Developed in the early 1960s by R. Griswold, D.J.
Farber, and F Polensky at Bell Labs.
@ Designed primarily to process string data (text
processing).
@ “StriNg Oriented symBOlic Language”
= At first, SEXI (String Expression Interpreter) was proposed and
rejected.
% Distributed free, which contributed to its dissemination
and influence.
@ Spin-offs: SPITBOL(speedy implementation), FASBOL,
SLOBOL and SNOBAT.

= The most familiar version is SNOBOLA.

Chapter 2: History of Programming
Languages 24




The 1960s: Explosion of PLs
SIMULA 67

@ Created by Kristen Nygaard and Ole-Johan
Dahl in Oslo during the period 1965-1967.

@ Based in SIMULA |, designed in the early 1960s
and includes ALGOL 60 as a subset.

@ Originally designed for simulations, such as
gueues at a supermarket, response times of
emergency services, or chain reactions of
nuclear reactors.

@ Significant influence on programming languages
development (not widely used)

Chapter 2: History of Programming
Languages 25

The 1960s: Explosion of PLs
SIMULA 67

@ Moved toward a general-purpose language.
@ Contributed to the understanding of abstraction
and computation

= Introduction of the class concept fundamental to most
object-oriented languages.

= Basic idea of a class: data structure and routines that
manipulate the data structure are packed together

= It can be called the first object-oriented language.
@ Successor (more than 20 years later): Beta

Chapter 2: History of Programming
Languages 26

The 1960s: Explosion of PLs
SIMULA 67

@ Genealogy:

Chapter 2: History of Programming
anguages 27

The 1960s: Explosion of PLs
BASIC
% Designed by John Kemeny and Thomas E. Kurtz in the
early 1960s
@ Goal: facilitate the learning of programming and time-
sharing principles.

= Interactive language that was easy to learn, quick to compile,
and easy to debug.

@ "Beginners All-purpose Symbolic Instruction Code “
% Enjoyed widespread use but has gotten little respect.

@ Final product: an interactive language that was easy to
learn, quick to compile, and easy to debug.

Chapter 2: History of Programming
Languages 28

The 1960s: Explosion of PLs
BASIC

@ Much of the design came from FORTRAN, with
some minor influence from the syntax of ALGOL
60.

@ Some characteristics:

« Variables were formed of a single letter or a single
letter followed by a single digit.

= Variables are not declared and there is no distinction
between integer and real numbers (like FORTRAN).

= A program is organized by line numbers.

= Original BASIC: only 14 different statement types and
a single data type (floating point). The type was
referred as “number”.

Chapter 2: History of Programming
Languages 29

The 1960s: Explosion of PLs
BASIC

@ Enjoyed great popularity over the years,
especially as a teaching language.
= Simplicity appeals to many people who want to
use the computer, but do not wish to learn
programming.
@ Multiple implementations of the language
with vastly different characteristics.

Chapter 2: History of Programming
Languages 30




The 1960s: Explosion of PLs
BASIC
@ Genealogy:

Chapter 2: History of Programming
Languages 31

The 1970s: Back to simplicity
PASCAL

@ Linked to the influence of Pascal was the
structured approach to program methodology:
step-wise refinement.

@ Popularity based on remarkable combination of
simplicity and expressivity .

@ By the mid-1990s, the popularity of Pascal was
on the decline, both in industry and in
universities.

Chapter 2: History of Programming
Languages 33

The 1970s: Back to simplicity
PASCAL
@ Designed by Niklaus Wirth between 1971-1973
@ Distilled the ideas of ALGOL into a small,
simple, efficient, structured language that was
intended for use in teaching programming
= Gained acceptance not only for instruction but for
many practical uses as well.
@ Omitted very important practical features:
adequate string handling, expandable input-
output capabilities, separate compilation.

Chapter 2: History of Programming
Languages 32

The 1970s: Back to simplicity
PASCAL
2 Genealogy:

Chapter 2: History of Programming

Languages 34

The 1970s: Back to simplicity
c

% Designed and implemented by Dennis M. Ritchie at Bell
Laboratories in New Jersey in 1972.
% Influenced by the programming language B created for
the first UNIX system. B was in fact based on BCPL.
& Characteristics:
= Adequate control statements and data structuring facilities.
= Rich set of operators (high degree of expressiveness).
» Lack of complete type checking.

@ Popularity: compiler is part of the UNIX operating
system.

Chapter 2: History of Programming
Languages 35

The 1970s: Back to simplicity
c

2 Genea

Chapter 2: History of Programming
Languages 36




The 1970s: Back to simplicity
ADA

% In the mid 1970s the United States Department of
Defense supported an effort to reduce the mounting
software cost caused by the multitude of languages
used by the defense establishment.

@ In 1976, 23 already-existing programming languages
were appraised in light of these goals.
= No existing language was found entirely satisfactory
= A cycle of language specifications and design reviews was

conducted to develop a new language.

& The language was named ADA in honor of the first
computer programmer.

Chapter 2: History of Programming
Languages 37

The 1970s: Back to simplicity
ADA
2 Features:

= Highevel constructs for concurrent execution and
real-time programming.

= Construct for aggregating data structures and
subprocedures called a “package”.

= A mechanism for exception handling.

@ Problem: too large and too complex.

Chapter 2: History of Programming
Languages 38

The 1970s: Back to simplicity
ADA

@ Genealogy:

Chapter 2: History of Programming
anguages 39

The 1970s: Back to simplicity
MODULA-2

@ Designed by Niklaus Wirth called Modula-2.

@ Based on an earlier language, Modula that was
designed for constructing operating systems.

@ Attempted to correct deficiencies of the design
of Pascal as well as to add abstraction and
partial concurrency facilities.

@ The designer attempted to keep the language
as small as simple as possible
= Left out a number of features, including exception-

handling mechanisms.

Chapter 2: History of Programming
Languages 40

The 1980s: Other Paradigms
SCHEME
@ Developed from 1975 to 1978 by Gerald J.
Sussman and Guy L. Steele Jr at MIT.
@ Not until mid-1980s.
@ A version of LISP that is more uniform that
other versions

= Designed to resemble more closely the lambda
calculus.
@ Another versions of LISP that appeared in the
1980s is Common LISP, which attempts to
define a standard for the LISP family.

Chapter 2: History of Programming
Languages 41

The 1980s: Other Paradigms
ML

@ Developed by Robin Milner at Edinburgh
University.

2 “Metal anguage”

@ Syntax more closely related to Pascal.

@ Mechanism for type checking, similar to Pascal,
but much more flexible.

2 A related language is Miranda, developed by
David Turner at Manchester University in 1986.

Chapter 2: History of Programming
Languages 42




The 1980s: Other Paradigms
PROLOG

@ Developed by a group at Marseille led by A.
Colmerauer .

@ Uses formal logic notation to communicate
processes to computer.

& Reasons it is not widely used:
= Highly inefficient (non imperative).
= Effective for only small areas of application.

Chapter 2: History of Programming
Languages 43

Object-oriented Paradigm

2 SMALLTALK
2C++

2 EIFFEL

2 JAVA

Chapter 2: History of Programming
Languages

a4




