
1

Chapter 2

History of Programming 
Languages

2
Chapter 2: History of Programming 

Languages

Topics

Early History: low level languages
The 1950s: first programming languages 
The 1960s: an explosion in programming 
languages
The 1970s: back to simplicity
Functional and logic programming
Object-oriented programming

3
Chapter 2: History of Programming 

Languages

History of Programming Languages

The history of programming languages is 
tied to the evolution of computers.
Several hundred programming languages 
and dialects since low-level programming 
languages (1940s).
n Most have limited life span and utility.
n A few have enjoyed widespread success in one 

or more application domain.
n Many have played an important role in 

influencing the design of future languages

4
Chapter 2: History of Programming 

Languages

Most Influential Programming 
Languages

5
Chapter 2: History of Programming 

Languages

Early History: Low Level 
Languages

1940s and early 1950s: 
n Computers: slow, unreliable, difficult to program
n Machine language

Programming was tedious and error -prone.
Programs were difficult to read (numeric codes for instructions)
and difficult to modify.

n Assembly language
Use symbols and mnemonics to express the underlying 
machine code.
Highly machine dependent
Syntax: unlike natural language

n Goal: implement what was possible on the available 
hardware.

6
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

First high-level programming language.
Developed between 1954-1957 by a 
team at IBM lead by John Backus.
“FORmula TRANslating”
Designed primarily for scientific and 
computational programming (to express 
mathematical formulas). 
Goal: to eliminate bookkeeping details 
and repetitive planning. 

FORTRAN



2

7
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Most features were new and become standard 
in later languages.
n Array, loops controlled by an index variable, if-

selection statement, do-loop statement, input-output 
formatting.

Some characteristics:
n Variable names could be up to 6 characters (Fortran 

0 at most two).
n Spaces were ignored because they could be 

confusing to the human typist (a coder wrote code 
on paper and a typist punched the codes into cards)

FORTRAN

8
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

n There were no data-typing statements (variables 
whose name began with I, J, K, L, M, and N were 
implicitly integer type, the other were implicitly 
floating-point)

Fortran initiated the search for languages that 
communicate with the computer at a high level, 
a level closer to the way human think.
Fortran and its descendants (Fortran II, IV, 77, 
90, and 95) are still dominant in scientific 
applications today. 
n Their compilers are still among the most efficient 

available because they produce very fast code.

FORTRAN

9
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Idea: design a universal language for 
communicating programs among users and 
to computers.
Developed by an international committee 
between 1958 and 1960.
“ALGOrithmic Language ”
n Initially called IAL (the International Algebraic 

Language).
Goal: to provide a general, expressive 
language for describing algorithms, both in 
research and in practical applications.

ALGOL 60

10
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

ALGOL had a profound effect on 
programming languages design. 
n Most of the current imperative languages 

are derivatives of ALGOL (Pascal, Ada, C, 
MODULA-2, C, Java).

n Research papers today still often use 
ALGOL or ALGOL-like syntax to describe 
algorithms.

ALGOL 60

11
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Concepts introduced:
n Free-format.
n Structured statements.
n Type declarations for variables .
n The concept of block was introduced: begin-end 

blocks.
n Procedures were allowed to be recursive.
n Two different means of passing parameters to 

subprograms: pass by value and pass by name.
n Stack-dynamic array were allowed.

ALGOL 60

12
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Some firsts:
n The first time a language was designed by an 

international group.
n The first language designed to be machine 

independent.
n The first language whose syntax was formally 

described using BNF notation.

ALGOL evolved: 
n ALGOL 60àALGOL WàALGOL 68. 
n ALGOL68 had a long list of features: parallel computation, semaphores, 

implementation-dependant constants, large collection of types (complex 
numbers, bit patterns, long and short numbers, strings, and flexible 
arrays), and case-statement.

ALGOL 60



3

13
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Genealogy:

ALGOL 60

Fortran I (1957)

ALGOL 60 (1960)

ALGOL 58 (1958)

14
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

First functional programming language.
Intended to provide a tool for writing programs for 
symbol manipulation and list processing in the field of 
artificial intelligence.
Developed by John McCarthy and his colleagues at MIT 
in the late 1950s-early 1960s 
“LISt Processor”
Primarily data structure: list of symbols.
n Words in a sentence, a list of attributes, a payroll record, a 

symbolic differential equation.

Based of function application.

LISP

15
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

List: “nil” element and a pair element (a pair of 
pointers, one to an element of the list and one to 
the rest of the list). 
Data and programs are represented as lists.

Pioneered general notions of computation: 
garbage collection.
Lisp and its variants (MACLISP, UTLISP, 
COMMONLISP, SCHEME, etc) are still in use 
today in many artificial intelligence applications.

LISP

16
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Developed by the U.S. Department of Defense 
in 1960.
Goal: to obtain a common programming 
language for data processing applications. 
“COmmon Business Oriented Language “
COBOL had the opposite effect than ALGOL 60
n Quickly adopted by banks and corporations for a 

large-scale record-keeping and other business 
applications.

n It had little effect on the design of subsequent 
languages, except PL/I.

COBOL

17
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Major goal: to have a more English-like programming 
language suitable for business data processing. 
n Uses English as a basis for its syntax. 
n Programs are constructed out of clauses, sentences, and 

paragraphs
n Programs tend to be more wordy than comparable programs in 

other languages. 

Problems:
n The design was supposed to permit nonprogrammers to read 

and understand programs
It only complicated the syntax without providing readability.

n Complex algorithms are extremely difficult to program.

COBOL

18
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Designed by Kenneth Iverson between 1959-
1960s at Harvard University. 
Designed to describe computer architecture
n Influenced by the field of linear algebra 
n It was not intended for implementation

Goal: to facilitate the rapid programming of 
matrix algebraic and other mathematical 
computations.
“A Programming Language “

APL



4

19
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

APL is also functional in style and has a large 
powerful set of operators that allow most 
iterations to be performed completely automatic.
n Programs are extremely difficult to read and 

maintain.
It is still used today and it has not changed a lot 

over all this years. 

A descendent of APL is the language J.

APL

20
Chapter 2: History of Programming 

Languages

The 1950s: The First PLs

Programming languages developed rapidly 
in a short period of time 1954-1960.

Three major imperative programming 
languages (FORTRAN, COBOL, ALGOL 60)
n All three, in modified form, still in use today.

Functional programming began (LISP) which 
is in use today.

21
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

After success of initial programming languages, 
everyone wanted to design their own language.

Hundreds of special-purpose programming 
languages
n Designer’s particular interests or concerns.
n Most have vanished.
n Only a few had significant effect on development of 

programming languages.

22
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Designed by IBM between 1963 and 1964.
Intended to use a new family of computers (the 360 
family).
Goal: to combine all features of FORTRAN, COBOL, 
and ALGOL 60 and add concurrency and exception 
handling as well. 
Failure: 
n Translators: difficult to write, slow, huge and unreliable 
n Language: difficult to learn and error prone to use, due to the 

large number of unpredictable interactions among language 
features.

This language attempted to do too much, provide to 
many features, and satisfy too many users.

PL/I

23
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Genealogy:

PL/I

COBOL (1960)

FORTRAN IV (1962)

ALGOL 60 (1960)

PL/1 (1965)

24
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Developed in the early 1960s by R. Griswold, D.J. 
Farber, and F Polensky at Bell Labs.
Designed primarily to process string data (text 
processing).
“StriNg Oriented symBOlic Language”
n At first, SEXI (String Expression Interpreter) was proposed and 

rejected.

Distributed free, which contributed to its dissemination 
and influence.
Spin-offs: SPITBOL(speedy implementation), FASBOL, 
SLOBOL and SNOBAT. 
n The most familiar version is SNOBOLA.

SNOBOL



5

25
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Created by Kristen Nygaard and Ole-Johan 
Dahl in Oslo during the period 1965-1967.
Based in SIMULA I, designed in the early 1960s 
and includes ALGOL 60 as a subset.

Originally designed for simulations, such as 
queues at a supermarket, response times of 
emergency services, or chain reactions of 
nuclear reactors.

Significant influence on programming languages 
development (not widely used)

SIMULA 67

26
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Moved toward a general-purpose language. 

Contributed to the understanding of abstraction 
and computation 
n Introduction of the class concept fundamental to most 

object-oriented languages.
n Basic idea of a class: data structure and routines that 

manipulate the data structure are packed together
n It can be called the first object-oriented language.

Successor (more than 20 years later): Beta 

SIMULA 67

27
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Genealogy:

SIMULA 67

SIMULA I (1964)

SIMULA 67 (1967)

ALGOL 60 (1960)

28
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Designed by John Kemeny and Thomas E. Kurtz in the 
early 1960s 
Goal: facilitate the learning of programming and time-
sharing principles. 
n Interactive language that was easy to learn, quick to compile, 

and easy to debug.

"Beginner’s Al l-purpose Symbolic Instruction Code “
Enjoyed widespread use but has gotten little respect.
Final product: an interactive language that was easy to 
learn, quick to compile, and easy to debug.

BASIC

29
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Much of the design came from FORTRAN, with 
some minor influence from the syntax of ALGOL 
60.
Some characteristics:
n Variables were formed of a single letter or a single 

letter followed by a single digit.
n Variables are not declared and there is no distinction 

between integer and real numbers (like FORTRAN).
n A program is organized by line numbers.
n Original BASIC: only 14 different statement types and 

a single data type (floating point). The type was 
referred as “number”.

BASIC

30
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Enjoyed great popularity over the years, 
especially as a teaching language.
n Simplicity appeals to many people who want to 

use the computer, but do not wish to learn 
programming.

Multiple implementations of the language 
with vastly different characteristics.

BASIC



6

31
Chapter 2: History of Programming 

Languages

The 1960s: Explosion of PLs

Genealogy:

BASIC

FORTRAN IV (1962)

BASIC (1964)

ALGOL 60 (1960)

QUICKBASIC (1988)

Visual BASIC (1990)

Visual BASIC.NET (2002)

32
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity 

Designed by Niklaus Wirth between 1971-1973

Distilled the ideas of ALGOL into a small, 
simple, efficient, structured language that was 
intended for use in teaching programming
n Gained acceptance not only for instruction but for 

many practical uses as well. 

Omitted very important practical features: 
adequate string handling, expandable input-
output capabilities, separate compilation.

PASCAL

33
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity 

Linked to the influence of Pascal was the 
structured approach to program methodology: 
step-wise refinement.
Popularity based on remarkable combination of 
simplicity and expressivity .

By the mid-1990s, the popularity of Pascal was 
on the decline, both in industry and in 
universities.

PASCAL

34
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity

Genealogy:

PASCAL

PASCAL (1971)

ALGOL 60 (1960)

ALGOL W (1966)

ALGOL 68 (1968)

35
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity 

Designed and implemented by Dennis M. Ritchie at Bell 
Laboratories in New Jersey in 1972. 
Influenced by the programming language B created for 
the first UNIX system. B was in fact based on BCPL. 
Characteristics:
n Adequate control statements and data structuring facilities.
n Rich set of operators (high degree of expressiveness).
n Lack of complete type checking.

Popularity: compiler is part of the UNIX operating 
system.

C

36
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity

Genealogy:

C

ALGOL 68 (1968)

CPL (1963)

BCPL (1969)

B (1970)

C (1971)

ANSI C (1989)

C99 

C++ (1985)



7

37
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity 

In the mid 1970s the United States Department of 
Defense supported an effort to reduce the mounting 
software cost caused by the multitude of languages 
used by the defense establishment.
In 1976, 23 already-existing programming languages 
were appraised in light of these goals. 
n No existing language was found entirely satisfactory
n A cycle of language specifications and design reviews was 

conducted to develop a new language. 

The language was named ADA in honor of the first 
computer programmer.

ADA

38
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity 

Features:
n High-level constructs for concurrent execution and 

real-time programming.
n Construct for aggregating data structures and 

subprocedures called a “package”.
n A mechanism for exception handling.

Problem: too large and too complex.

ADA

39
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity

Genealogy:

ADA

PASCAL (1971)

ADA 83 (1983)

ADA 95 (1995)

40
Chapter 2: History of Programming 

Languages

The 1970s: Back to simplicity 

Designed by Niklaus Wirth called Modula-2.

Based on an earlier language, Modula that was 
designed for constructing operating systems.

Attempted to correct deficiencies of the design 
of Pascal as well as to add abstraction and 
partial concurrency facilities.
The designer attempted to keep the language 
as small as simple as possible
n Left out a number of features, including exception-

handling mechanisms.

MODULA-2

41
Chapter 2: History of Programming 

Languages

The 1980s: Other Paradigms 

Developed from 1975 to 1978 by Gerald J. 
Sussman and Guy L. Steele Jr at MIT. 
Not until mid-1980s.

A version of LISP that is more uniform that 
other versions
n Designed to resemble more closely the lambda 

calculus.
Another versions of LISP that appeared in the 
1980s is Common LISP, which attempts to 
define a standard for the LISP family.

SCHEME

42
Chapter 2: History of Programming 

Languages

The 1980s: Other Paradigms 

Developed by Robin Milner at Edinburgh 
University.
“MetaLanguage”

Syntax more closely related to Pascal.

Mechanism for type checking, similar to Pascal, 
but much more flexible.

A related language is Miranda, developed by 
David Turner at Manchester University in 1986.

ML



8

43
Chapter 2: History of Programming 

Languages

The 1980s: Other Paradigms 

Developed by a group at Marseille led by A. 
Colmerauer .
Uses formal logic notation to communicate 
processes to computer.

Reasons it is not widely used:
n Highly inefficient (non imperative).
n Effective for only small areas of application.

PROLOG

44
Chapter 2: History of Programming 

Languages

Object-oriented Paradigm

SMALLTALK

C++
EIFFEL

JAVA


