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Logic Programming Paradigm

AKA Declarative Paradigm
n The programmer

Declares the goal of the computation (specification of results 
are stated).
Does not declare a detailed algorithm by which these goals 
are to be achieved. 

Application domain
n Database design
n Natural language processing
n Artificial Intelligence

Automatic theorem proving
Example language: Prolog
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Logic Programming

Instead of providing implementation, execute 
specification.
n Relieves the programmer of specifying the 

implementation.
n Express programs in a form of symbolic logic.

Declarative specification:
n Given an element x and a list L, to prove that x is in 
L, proceed as follows:

Prove that L is [x].
Otherwise, split L into L1 and L2 and prove one of the 
following:
n x is in L1 or
n x is in L2
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Logic Programming

Less effort to write, but implementation 
may be very inefficient.
n Requires that the execution engine be more 

complex.

n Use a logical inferencing (INFERENCE ENGINE)

process to produce results
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Introduction to Predicate 
Calculus

Symbolic logic can be used for the basic 
needs of formal logic:
n Express propositions
n Express relationships between propositions
n Describe how new propositions can be 

inferred from other propositions
Particular form of symbolic logic used for 
logic programming is called first-order
predicate calculus
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Introduction to Predicate 
Calculus

Proposition: a logical statement that 
may or may not be true.
n Consists of objects and relationships of 

objects to each other.
Can either assert truth (“john speaks Russian”) or 
query existing knowledge base (“does john speak 
Russian”).

Can contain variables, which can become bound
speaks(x,Russian).
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Introduction to Predicate 
Calculus

Example (English statements – Predicate Calculus)

n 0 is a natural number

natural(0).

n 2 is a natural number 

natural(2).

n For all x, if x is a natural number, then so is the successor o f x.

For all x, natural(x) à natural(successor(x)).

n -1 is a natural number

natural(-1).
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Introduction to Predicate 
Calculus

First and third logical statements are axioms for the 
natural numbers.

n Statements that are assumed to be true and from which 
all true statements about natural numbers can be proved.

Second logical statement can be proved from the 
previous axioms.
n 2 = successor(successor(0)).

n natural(0) à natural(successor(successor(0)).

Fourth logical statement cannot be proved from the 
axioms and so can be assumed to be false.
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Predicate Calculus: statements

Predicate calculus classifies the different 
parts of statements as:

1. Constants . These are usually number or names. 
Sometimes they are called atoms, since they 
cannot be broken down into subparts. 
n Example: 1, 0, true, false

2. Predicates. These are names for functions that 
are true or false, like Boolean functions in a 
program. 
n Can take any number of arguments.
n Example: the predicate natural takes one argument.
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Predicate Calculus: statements

3. Functions . Predicate calculus distinguishes 
between functions that are true or false – these are 
predicates – and all other functions, which represent 
non-Boolean values. 
n Example: successor

4. Variables . Variables stand for as yet unspecified 
quantities. 
n Example: x

5. Connectives . These include the operations and, 
or, and not, just like the operations on Boolean 
data in programming languages. Additional 
connectives are implication and equivalence
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Predicate Calculus: table of 
connectives

Logically equivalent 
to ¬a∪b

a implies b
b implies a

a ⊃ b
a ⊂ b

⊃

⊂

Implication

True if a and b are 
both true or both 
false

a is equivalent to ba ≡ b≡Equivalence

True if either a or b
(or both) is true

a or ba ∪ b∪Disjunction

True if a and b are 
both true

a and ba ∩ b∩Conjunction

True if a is false; 
otherwise false

not a¬a¬Negation

NotesMeaningExampleSymbolName
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Predicate Calculus: connectives

By convention, negation has highest precedence. 
Conjunctions, disjunctions, and equivalence have 
higher precedence than implication (in that 
order).
n Example: p ∪ q ∩ r ⊃ ¬s ∪ t is equivalent to 

((p ∪ (q ∩ r)) ⊃ ((¬s) ∪ t))

14Chapter 16: Logic Programming

Predicate Calculus: quantifiers

6. Quantifiers. These are operations that introduce 
variables. 
n Universal Quantifier: “for all”
n Existential Quantifier: “there exists”
n A variable introduced by a quantifier is said to be bound

by the quantifier.
n It is possible for variables also to be free (not bound by 

any quantifier).
n Quantifiers have higher precedence than any of the 

operators.
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Predicate Calculus: table of 
quantifiers

There exists a value of X such that P is true∃ X P∃Existential

For all X, P is true∀ X P∀Universal

MeaningExampleSymbolName
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Predicate Calculus: quantifiers

Examples:
n ∀x(speaks(x,Russian))

True if everyone on the planet speaks Russian; false 
otherwise.

n ∃x(speaks(x,Russian))
True if at least one person on the planet speaks Russian; 
false otherwise.

n ∀x ∃y(speaks(x,y))
True if every person x speaks some language y; false 
otherwise.

n ∃ x ∀ y(speaks(x,y))
True if at least one person on the planet speaks every 
language y; false otherwise.
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Predicate Calculus: statements

7. Punctuation Symbols . These include left and 
right parentheses the coma, and the period.
Parentheses can be left out based on common 
conventions about the precedence of connectives.

l Arguments to predicates and functions can 
only be terms, that is, combinations of 
variables, constants, and functions. Terms 
cannot contain predicates, quantifiers, or 
connectives.
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Predicate Calculus: examples
prime(n)
n True if the integer value of n is a prime number.

0 ≤ x + y
n True if the real sum of x and y is nonnegative.

speaks(x,y)
n True if the person x speaks language y.

0 ≤ x ∩ + x ≤ 1
n True if x is between 0 and 1, inclusive.

speaks(x,Russian)∩speaks(y,Russian) ⊃
talkswith(x,y)
n True if the fact that both x and y speak Russian implies that x talks with y

∀x(¬literate(x) ⊃ (¬writes(x)∩ ∃y(reads(x,y)∩
book(y))))
n True if every illiterate person x does not write and has not read any book 

y.



4

19Chapter 16: Logic Programming

Predicate Calculus: tautologies

Tautologies : Propositions that are true for all 
possible values of their variables.
n Example: q ∪ ¬q

Predicates that are true for some particular 
assignment of values to their variables are called 
satisfiable.
n Example: speaks(x,Russian)

If at least one person in the planet speaks Russian.

Predicates that are true for all possible 
assignments of values to their variables are valid.
n Example: even(y) ∪ odd(y)

It is true for all integers 
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Propositions: Summary

Objects in propositions are represented by 
simple terms: either constants or variables
Constant: a symbol that represents an 
object
Variable: a symbol that can represent 
different objects at different times
n Different from variables in imperative 

languages
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Propositions: Summary

Simplest propositions are called atomic
propositions which consist of compound 
terms
A compound term is composed of two 
parts
n Functor: function symbol that names the 

relationship.

n Ordered list of parameters (tuple)
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Propositions: Summary

Examples:
student(jon)
like(seth, OSX)
like(nick, windows)
like(jim, linux)

Propositions can be stated in two forms:
n Fact: proposition is assumed to be true
n Query: truth of proposition is to be determined

Compound proposition:
n Have two or more atomic propositions
n Propositions are connected by operators
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Clausal Form

Problem of predicate calculus:
n Too many ways to state the same thing

Solution: use a standard form for propositions
All propositions can be expressed in clausal 
form: 

B1 ∪ B2 ∪ … ∪ Bn ⊂ A1 ∩ A2 ∩ … ∩ Am
n means if all the As are true, then at least one B is true

Characteristics of clausal form:
n Existential quantifiers are not required.
n Universal quantifiers are implicit with use of variables.
n No operator other than conjunctions and disjunctions.
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Clausal Form

Antecedent: right side of proposition.
Consequent: left side of the proposition.

likes(bob,mary) ⊂ likes(bob,redheads)∩redhead(mary).

A proposition with zero or one terms in the 
consequent is called a Horn clause.

antecedentconsequent
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Horn Clauses

A Horn clause has a head h, which is a 
predicate, and a body, which is a list of 
predicates p1,p2,…pn

p1,p2,…pn à h

n In a Horn clause the head is true if every predicate of 
the body is true (simultaneously).

body head
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Horn Clauses: facts and queries

Fact: a Horn clause without body.
n They are called headless Horn clauses.

à h or just h
n It means that h is always true.

Example: à mammal(human).

Query: a Horn clause without a head.
n The “opposite” of a fact.

Example: mammal(human) à
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From Predicates to Horn 
Clauses

There is a limited correspondence between 
Horn clauses and predicates.
n Horn clauses can be written equivalently as a 

predicate
HC: snowing(C) ß precipitation(C),freezing(C).

PC: snowing(C) ⊂ precipitation(C)∩freezing(C).

n Not all predicates can be translated into Horn 
clauses.
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Properties of Predicate Logic 
Expressions

¬ ∃x P(x) ≡ ∀ x ¬P(x)¬∀x P(x) ≡ ∃x ¬P(x)Quantification

p ⊃ q ≡ ¬p ∨ qImplication

¬ (p ∧ q ) ≡ ¬p ∨ ¬ q¬ (p ∨ q ) ≡ ¬p ∧ ¬ qdeMorgan

p ∧ ¬p ≡ falsep ∨ ¬p ≡ trueIdentity

p ∧ p ≡ pp ∨ p ≡ pIdempotence

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)p ∨ q ∧ r ≡ (p ∨ q) ∧ (p ∨ r)Distributivity

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)Associativity

p ∧ q ≡ q  ∧ p p ∨ q ≡ q  ∨ pCommutativity

MeaningProperty
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From Predicates to Horn 
Clauses

Six-step procedure that will, whenever possible, 
translate a predicate p into a Horn clause.

1. Eliminate implications from p, using the implication 
property.

2. Move negation inward in p, using the deMorgan and 
quantification properties, so that only individual terms 
are negated.

3. Eliminate existential quantifiers from p, using a 
technique called skolemization. Here, the existentially 
quantified variable is replaced by a unique constant. 
n For example, the expression ∃xP(x) is replaced by P(c),  

where c is an arbitrarily chosen constant in the domain of x.
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From Predicates to Horn 
Clauses

4. Move all universal quantifiers to the beginning of 
p; as long as there are no naming conflicts, this 
step does not change the meaning of p. Assuming 
that all variables are universally quantified, we can 
drop the quantifiers without changing the meaning 
of the predicates.

5. Use the distributive, associative, and commutative 
properties to convert p to conjunctive normal form. 
In this form, the conjunction and disjunction 
operators are nested no more than two level deep, 
with conjunctions at the highest level.
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From Predicates to Horn 
Clauses

6. Convert the embedded disjunctions to implications, 
using the implication property. If each of these 
implications has a single term on its right, then each 
can be rewritten as a series of Horn clauses 
equivalent to p.

l Example:
∀x(¬literate(x)⊃(¬writes(x)∧¬∃y(reads(x,y)∧book(y))))

l Example:
∀x(literate(x)⊃reads(x)∨writes(x))
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Topics

Proving Theorems
n Resolution
n Instantiation and Unification

Prolog
n Terms
n Clauses

n Inference Process
n Backtracking
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Predicate Calculus and Proving 
Theorems

A use of propositions is to discover new 
theorems that can be inferred from known 
axioms and theorems
Resolution: the process of computing 
inferred propositions from given 
propositions
n Resolution principle is similar to the idea of 

transitivity in algebra.
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Resolution

Making a single inference from a pair of 
Horn clauses.
n If h is the head of a Horn clause and it 

matches with one of the terms of another 
Horn clause, then that term can be replaced 
by h.

The Horn clauses:
h ß terms
t ß t1, h, t2

The second clause is resolved to
t ß t1, terms, t2
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Resolution: example

Consider the following clauses:
speaks(Mary,English).
talkswith(X,Y) ß speaks(X,L), speaks(Y,L), X≠Y

Resolution allow us to deduce:
talkswith(Mary,Y) ß speaks(Mary,English), 

speaks(Y,English), Mary≠Y
Variables X and L are assigned the values “Mary”
and “English” in the second rule.
The assignment of values to values during resolution 
is called instantiation .
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Unification and Instantiation

Unification: finding values for variables in 
propositions that allows matching process 
to succeed
Instantiation: assigning temporary values 
to variables to allow unification to succeed
After instantiating a variable with a value,  
if matching fails, may need to backtrack 
and instantiate with a different value.
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Resolution: Theorem Proving

Use proof by contradiction.
Hypotheses: a set of pertinent propositions
Goal: negation of theorem stated as a 
proposition.
Theorem is proved by finding an 
inconsistency.
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The language Prolog

The most widely used logic programming 
language.
Prolog in a nutshell
n Uses Horn clauses

Almost identical notation of Horn clauses, except 
the implication arrow “ß” is replaced by a colon 
followed by a dash “:-”.

n Implements resolution using strict linear 
“depth first” strategy and a unification 
algorithm.
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A Prolog Program

Prolog approach.
n Describe known facts and relationships.

A program consists of a sequence of Horn 
clauses. 
n Clauses are implications of  the form

p1 if p2 … &pk written as p1 :- p2 , … ,pk where every 
p is a term. 
n p1 is called the head and p2 , … ,pk is the body. 
n The body is a list of goals separated by commas 

(conjunctions).
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Terms

All Prolog statements are constructed from 
terms.

Atoms

Numbers
Constants

Variables

Simple Terms

Compound/Complex terms (structures)
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Terms: atoms

Atoms are used as names of individuals 
and predicates.
Atoms can be constructed in three ways:

1. Strings of letters, digits and the underscore 
character, starting with a lower-case letter.
x
vancouver
ax123aBCD
abc_123_etc
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Terms: atoms
2. Strings of special characters .

Some of these have a predefined meaning (: -).
-->
==>

3. String of characters enclosed in single 
quotes.

It can contain any character.
‘Florida’
’12$12$’
‘ back\\slashes’
’32’ is an atom, not equal to the number 32.
A zero length atom is written ‘’
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Terms: atoms

Internal representation:
n Atoms are not character strings, they are 

locations in a symbol table.

n Only one copy of each atom is stored.
n All occurrences are replaced by pointers to its 

location in the symbol table.
abracadabraabracazam= abracadabraabracazam 
a = b

Comparison takes the same amount of time.
n Pointers get compared rather than the strings of 

characters.
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Terms: numbers

Integer
n Useful for task such as counting the elements 

of a list.

Real
n Not used very much in typical Prolog 

programming.
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Terms: variables

Stand for objects that we cannot name.
Begins with a capital letter or ‘_’.
n X
n _value
n Mother

A variable can be
n Instantiated when there is an object that it 

stands for.
n Uninstantiated when what the variable it 

stands for is not yet known.
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Terms: variables

Question containing a variable:
n Search through all facts to find an object that 

the variable could stand for.

Anonymous variable (_)
n A special variable that matches anything, but 

never takes on a value.
n Successive anonymous variables in the same 

clause do not take on the same value.
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Terms: structures
Consists of a functor followed by a 
sequence of arguments.
n The functor must be an atom.

n Arguments can be any kind of terms (including 
other structures).

n The outermost functor (f/2, in this case) is 
called the principal functor of the structure.

f(g(h,i),j(k,1))
f

g j

h i k l 48Chapter 16: Logic Programming

Terms: structures

Internal representation
n A structure is a linked tree made of pointers to 

its substructures and to entries in the symbol 
table.
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Prolog Clauses

Prolog clauses are of three types:
n Facts: declare things that are always, 

unconditionally true.

n Rules: declare things that are true, depending 
on a given condition.

n By means of questions users can ask the 
program what things are true.
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Prolog Clauses: characteristics

A Prolog clause:
n Arbitrary number of arguments (parameters).
n A predicate that takes N arguments is called N-

placed predicate.
n A one-place predicate describes a property of 

one individual; a two-place predicate describes 
a relation between two individuals.

n The number of arguments that a predicate 
takes is called its arity .
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Prolog Clauses: characteristics

n Two distinct predicates can have the same 
name if they have different arities.

mother(pam) meaning Pam is a mother.
mother(pam,bob) meaning Pam is the mother of 
Bob.

n A predicate is identified by giving its name, a 
slash, and its arity.

mother/1.
mother/2.

n Every Prolog statement is terminated by a 
period.
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Facts

Define relationships between objects.
Sometimes called ground clauses because 
they are the basis from which other 
information is inferred. 
Facts are clauses that have an empty body.
Facts are written as: 
name_of_relationship(object,…,object).

A collection of facts and rules  is called a 
database or knowledge base.
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Facts: examples

parent(tom,bob).

parent(pam,bob).

parent(tom,liz).

parent(bob,ann).

parent(bob,pat).

parent(pat,jim).

PAM TOM

LIZBOB

PATANN

JIM

Family Relation
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Rules

Specify things that are true if some 
condition is satisfied.
Rules are used to say that a fact depends 
on a group of other facts.
A rules consists of a head and a body.
n Connected by the symbol ‘:-’ (if).

n The head describes what fact the rule is 
intended to define.

n The body describes the conjunctions of goals 
that must be satisfied for the head to be true.
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Rules: examples

For all X and Y,
Y is an offspring of X if

X is a parent of Y.

?-offspring(Y,X):-parent(X,Y).

head/conclusion body/condition
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Rules: examples

?-mother(X,Y):- parent(X,Y),female(X)

parent

X

Y

mother

female
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Rules: examples

?-grandparent(X,Z):- parent(X,Y),parent(Y,Z).

parent

X

Y grandparent

Z

parent
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Rules: examples

?-sister(X,Y):- parent(Z,X), parent(Z,Y), 
female(X).

parent

X Y

sister

Z
parent

female
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Rules: exercise

Define the relation aunt(X,Y)
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Questions
How do we use Prolog programs? 
n By posing queries (a query is a request for the 

computer to do something.)
Questions are clauses that only have the 
body.
n Search through the database.
n Look for facts that match the fact in question.

Two facts match if their predicates and corresponding 
arguments are the same.
n YES: Prolog finds a match
n No: Prolog does not find a match (nothing matches the 

question  vs. false)
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Questions: example

?-parent(bob,pat).

PAM TOM

LIZBOB

PATANN

JIM

Family Relation

User Queries Prolog’s Answers

?-parent(liz,pat).

?-parent(tom,ben).

?-parent(X,liz).

?-parent(bob,X).

?-parent(X,Y).

yes

no

no

X=tom

X=ann
X=pat

X=pam
Y=bob;
X=tom
Y=bob;
…
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Conjunctions

More complicated relationships.
Satisfy two or more separate goals.
Commas are understood as conjunctions.
Question containing conjunctions:
n Try to satisfy each goal in turn (searching the 

database).

n All goals have to be satisfied.
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Complex Queries: example

1. Who is a parent of Jim?
Assume that this is some Y.

2. Who is a parent of Y?
Assume that this is some X.

parent

X

Y

parent

jim

grandparent?-parent(X,Y),parent(Y,jim).

X=bob
Y=pat

Who is a grandfather of Jim?
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Complex Queries: example

1. Who is a child of Tom?
Assume that this is some X.

2. Who is a child of X?
Assume that this is some Y.

?-parent(tom,X),parent(X,Y).
X=bob
Y=ann

X=bob
Y=pat

parent

tom

X

parent

Y

grandchildren

Who are Tom’s grandchildren?
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1. Who is a parent, X, of Ann?
2. Is (this same) X a parent of Pat?

Complex Queries: example

?-parent(X,ann),parent(X,pat).
X=bob

Do Ann and Pat have a 
common parent?
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Complex Queries: exercises

What will be Prolog’s answers to the following 
questions?

1. ?-parent(jim,X).

2. ?-parent(X,jim).

3. ?-parent(pam,X), parent(X,pat).

4. ?-parent(pam,X),parent(X,Y),parent(Y,jim).

Formulate in Prolog the following questions:

1. Who is Pat’s parent?
2. Does liz have a child?
3. Who is Pat’s grandparent?
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Matching / Unification

Two terms (term1 and term2) can be 
unified (matched) if they are alike or can 
be made alike by instantiation.
n Instantiation: make one variable the same as 

another.
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Matching / Unification
(1) If term1 and term2 are constants 

Same atom or same number .
(2) If term1 is a variable and term2 is any type 

of term
term1 is instantiated to term2

(3) If term1 and term2 are variables
They are instantiated to each other (share values).

(4) If term1 and term2 are complex terms
a. They have the same functor and arity.
b. All their corresponding arguments match.
c. The variable instantiations are compatible.

(5) Two terms match if and only if it follows from 
the previous four clauses that they match.

constants

variables

complex
terms
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Unification: examples

?-2=2.

User Queries Prolog’s Answers

?-bob=jim.
?-’bob’=bob.
?-’2’=2.
?-bob=X.

?-X=Y.

yes
no
yes
no
X=bob
yes
yes

?-X=bob. X=jim. no

?-kill(shoot(gun),Y))=kill(X,stab(knife)).
X= shoot(gun)
Y=stab(knife)
yes

?-kill(shoot(gun),stab(knife))=kill(X,stab(Y)).
X= shoot(gun)
Y=knife
yes
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Inference Process of Prolog

Queries are called goals
If a goal is a compound proposition, each 
of the facts is a subgoal
To prove a goal is true, must find a chain 
of inference rules and/or facts.  For goal 
Q:
B :- A
C :- B
…
Q :- P
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Inference Process of Prolog

Process of proving a subgoal is called matching, 
satisfying , or resolution.
Bottom-up resolution, forward chaining
n Begin with facts and rules of database and attempt to 

find sequence that leads to goal
n Works well with a large set of possibly correct 

answers

Top-down resolution, backward chaining
n Begin with goal and attempt to find sequence that 

leads to set of facts in database.
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Inference Process of Prolog
n works well with a small set of possibly correct 

answers
Prolog implementations use backward 
chaining
When goal has more than one subgoal, can 
use either
n Depth-first search:  find a complete proof for the 

first subgoal before working on others
n Breadth-first search: work on all subgoals in 

parallel.

Prolog uses depth-first search
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A Simple Prolog Knowledge 
Base

A Prolog knowledge base that describes the 
location of certain North American cities.

/* 1 */  located_in(atlanta,georgia).
/* 2 */  located_in(houston,texas).
/* 3 */  located_in(austin,texas).
/* 4 */  located_in(toronto,ontario).
/* 5 */  located_in(X,usa) : - located_in(X,georgia). 
/* 6 */  located_in(X,usa) : - located_in(X,texas).
/* 7 */  located_in(X,canada) :- located_in(X, ontario).
/* 8 */  located_in(X,north_america) : -

located_in(X,usa).  
/* 9 */  located_in(X,north_america) : -

located_in(X,canada).
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Inference Process: example

Query:
?- located_in(austin,north_america).

Unifies with the head of Clause 8 by instantiating X as 
austin. 
The right-hand side of Clause 8 becomes the new goal.
Goal: ?- located_in(austin,north_america).
Clause 8: located_in(X,north_america) :-

located_in(X,usa).
Instantiation: X = austin
New goal: ?-located_in(austin,usa).
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Inference Process: example

Unify the new query with Clause 6:
Goal: ?- located_in(austin,usa).
Clause 6: located_in(X,usa) :-

located_in(X,texas).
Instantiation: X = austin
New goal: ?-located_in(austin,texas).

This query matches Clause 3.  Since Clause 3 does not 
contain an “if”, no new query is generated and the 
process terminates successfully.
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Backtracking

If several rules can unify with a query, how 
does Prolog know which one to use?
Prolog does not know in advance which 
clause will succeed but it does know how 
to black out of blind alleys.
Prolog tries the rules in order in which they 
are given in the knowledge base.
n If a rule does not lead to success, it backs up 

and tries another
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Backtracking

The query ?-located_in(austin,usa)
will try to unify with Clause 5 and then, 
when that fails, the computer will back up 
and try Clause 6.
A good way to conceive of backtracking is 
to arrange all possible paths of 
computation into a tree. 
Consider the query:
?- located_in(toronto,north_america).
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Backtracking: example

The following tree shows all the paths that 
the computation might follow.
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Backtracking: example

We can prove that Toronto is in North 
America if we can prove that it is in either 
the U.S.A. or Canada.
If we try the U.S.A., we have to try several 
states and then Canada.
Almost all paths are blind alleys.
Only the rightmost one leads to a 
successful solution.
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Backtracking: example

Same diagram with arrows added to show 
the order in which the possibilities are 
tried.
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Backtracking: example

Whenever the computer finds it has gone 
down a blind alley, it backs up to the most 
recent query for which there are still 
untried alternatives, and tries another 
path.
When a successful answer is found, the 
process stops.
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Prolog Syntax: comments

Two ways to delimit comments
n Anything bracketed by /* and */
n /* This is a comment */

Anything between % and the end of the 
line
n % This is also a comment
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Sicstus

http://www.cs.sfu.ca/CC/SW/Prolog/
Linux and SunOS machines 
n CSIL SunOS machines have an additional 

Prolog implementation: BinProlog.

Running Sicstus Prolog
n orion% sicstus
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Running Sicstus

Interactive definition mode:
n The special goal [user] is used to enter interactive 

definition mode.
n In interactive mode, Prolog expects goals to establish. 
n ^D (i.e., the ctrl -D key) exits definition mode.

Consulting a file
n The special query 

?-consult(‘family.pl’).
asks prolog to read the definitions from the named file 
in quotes. 

n Goals must be terminated with a period or Prolog just 
waits until you enter the period. 
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Running Sicstus
n To load the same program use reconsult instead of 
consult.

Otherwise, there will be two copies of it in memory at the 
same time.

To exit from Prolog just type the special query 
?- halt.
If a single query has multiple solutions, Prolog
finds one solution and then asks whether to look 
for another (until all alternatives are found or you 
stop asking for them).
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Running Sicstus
?- located_in(X,texas).

X = houston
More (y/n) ? y
X = austin
More (y/n) ? Y
no

n The “no”at the end means there are no more 
solutions.

Any of the arguments of a predicate can be 
queried.
n ?- located_in(austin,X). % Names of regions that contain Austin
n ?- located_in(X,texas).  % Names of cities that are in Texas
n ?- located_in(X,Y). % “What is in what?”
n ?- located_in(X,X). % “What is in itself?”
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Sicstus: examples

Sample Prolog session
1: orion% sicstus
SICStus 3.8.4 ( sparc-solaris-5.6): Mon Jun 12 18:49:23 MET DST 2000
Licensed to cs.sfu.ca
| ?- [user].
| member(X, [X|_]).
| member(X, [_|More]) :- member(X, More).
| ^D
|{consulted user in module user, 0 msec 336 bytes}
|  ?- ['data.pl'].
{consulting /cs/gard1/dma/family.pl...}
{consulted / cs/gard1/dma/family.pl in module user, 10 msec 160 bytes}
yes
| ?- parent(X,liz).
X = tom;
no
| ?- halt.
2: orion% 
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Logic Programming
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Topics

Summary (resolution, unification, Prolog 
search strategy )
Disjoint goals
The “cut” operator
Negative goals
Predicate “fail”
Debugger / tracer
Arithmetic
Lists
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Resolution
Resolution is an inference rule for Horn 
clauses.
Given two clauses:
n If the head of the first clause can be matched 

with one of the statements in the body of the 
second clause then the first clause can be 
used to replace its head in the second clause 
by its body.

a ß a1,…,an.
b ß b1,…,bi,…,bm.

and bi matches a, then 
b ß b1, …, bi-1, a1, …, a n, bi+1, …, bm
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Unification

Unification is the process by which 
variables are instantiated so that 
patterns match during resolution.
Unification is the process of making two 
terms “the same” in some sense.
n ‘foo’ = foo

Prolog’s answer: yes. 
Both terms are atoms.

n ‘5’ = 5
Prolog’s answer: no. 
LHS is an atom and RHS is a number.
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Prolog’s Search Strategy

Prolog applies resolution in a strictly linear 
fashion
n Replaces goals left to right.

n Considers clauses in top-to-bottom order.
n Subgoals are considered immediately once 

they are set up.

n Search can be viewed as a depth-first search 
on a tree of possible choices.
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Prolog’s Search Strategy

Given the following clauses:
(1) ancestor(X,Y) :- parent(X,Z), 

ancestor(Z,Y).
(2) ancestor(X,X).
(3) parent(amy,bob).

Given the goal ancestor(X,bob), Prolog’s search 
strategy is left to right and depth first on the 
following tree of subgoals.
n Edges are labelled by the number of the clause used by 

Prolog for resolution
n Instantiation of variables are written in curly brackets. 94Chapter 16: Logic Programming

Prolog’s Search Strategy

Leaf nodes in this tree occur 
n No match is found for the leftmost clause.
n All clauses have been eliminated (success).

Whenever failure occurs Prolog
backtracks up the tree to find further paths 
to a leaf, releasing instantiations of 
variables.
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Prolog’s Search Strategy

Original Prolog program:
(1) ancestor(X,Y) :- parent(X,Z), 

ancestor(Z,Y).
(2) ancestor(X,X).
(3) parent(amy,bob).

Clauses in slightly different order:
(1) ancestor(X,Y) :- ancestor(Z,Y),

parent(X,Z). 
(2) ancestor(X,X).
(3) parent(amy,bob).

Problem?
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Existential Queries

Variables in queries are existentially 
quantified.

father(abraham,X)?

n Reads: “Does there exist an X such that 
abraham is the father of X?”

n For convenience, existential quantification is 
omitted.
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Universal Facts

Variables in facts are implicitly universally 
quantified.
In general, a fact p(T1,…Tn) reads that for 
all X1,…,Xk where the Xi are variables 
occurring in the fact p(T1,…Tn) is true.

likes(X,apple).

From a universally quantified fact one can 
deduce any instance of it.

likes(adan,apple).
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“Universal” Rules

Rule specifies things that are true if some 
condition is satisfied.

For all X and Y,
Y is an offspring of X if

X is a parent of Y.

?-offspring(Y,X):-parent(X,Y).
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Disjoint Goals (“or”)

Prolog provides a semicolon, meaning “or”.
n The definition of parent could be written as a single 

rule:
parent(X,Y) :- father(X,Y); mother(X,Y).

The normal way to express an “or” relation in 
Prolog is to state two rules.
n The semicolon adds little or no expressive power to the 

language.
n It looks so much like the comma that it often leads to 

typographical errors.
n The use of semicolon is not recommended.
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The “Cut” Operator (!)

Automatic backtracking is one of the most 
characteristic features of Prolog.
n Lead to inefficiency: explore possibilities that 

lead nowhere.
The cut predicate tells the Prolog system 
to forget about some of the backtrack 
points.
n Discards all backtrack points that have been 

recorded since execution entered the current 
clause.
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The “Cut” Operator (!)

After executing a cut:
n It is no longer possible to try other clauses as 

alternatives to the current clause.
n It is no longer possible to try alternative solutions to 

subgoalspreceding the cut in the current clause.
Reduces the search space.
n “do not go to” (alternatives that we know are bound to 

fail).
writename(1) :- !, write(‘One’).

Confirms the choice of a rule.
max(X,Y,Y) :- X>=Y, !.
max(X,Y,X).
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The “Cut” Operator (!)

Simulates an “else” statement when we are 
testing cases.
n Mutually exclusive conclusions .

f(X,0) :- X=0, !.
f(X,1) :- X>0, !.
f(X,undefined).

Example: Given the knowledge base
f(X) :- g(X), !, h(X).
f(X) :- j(X).
g(a).
j(a).

What is the result of executing the query ?- f(a). ?
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Negative Goals (“not)

The special predicate \+ means “not” or 
“cannot prove”.
If g is any goal, then \+ g succeeds if g
fails, and fails if g succeeds.

?- \+ likes(adan,apple).

The predicate \+ can appear only in a 
query or on the right-hand side of a rule.
n It cannot appear in a fact or in the head of a 

rule.

\+ likes(adan,apple).
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Negation as Failure

The behaviour of \+ is called negation as 
failure.
n In Prolog, you cannot state a negative fact . All 

you can do is conclude a negative statement if 
you cannot conclude the corresponding positive 
statement.

What is the definition a a person who is not a 
parent?

non_parent(X,Y) :- \+ father(X,Y), 
\+ mother(X,Y).
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Closed-World Assumption

What happens if you ask about people 
who are not in the knowledge base?
The Prolog systems assumes that its 
knowledge base is complete (this is 
called the closed-world assumption).
n Something that cannot be proved to be 

true is assumed to be false.
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Predicate “fail”

Predicate fail is a special symbol that 
will immediately fail when Prolog 
encounters it as a goal.
Cut-fail combination is used to say 
that something is not true.

likes(mary,X) :- snake(X), !, fail
likes(mary,X) :- animal(X).  
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Debugger / Tracer
The debugger allows you to trace exactly what is 
happening as Prolog executes a query.
?- trace.
yes

n Return: computation is shown step by step.
n s (for “skip”): the debugger will skip to the end of the 

current query (useful if the current query has a lot of 
subgoalswhich you do not want to see).

n a (for “abort”): the computation will stop.
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Arithmetic

Prolog supports both integers and floating-point 
numbers and interconvert them as needed.
Operator “is”: takes an arithmetic expression on 
its right, evaluates it, and unifies the result with 
its argument on the left.
?- Y is 2+2. ?- 5 is 3+3.
Y = 4
yes no
?- Z is 4.5+(3.9/2.1).
Z = 6.3571428
yes
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Arithmetic

The precedence of operators is about the 
same as in other programming languages.
Prolog is not an equation solver. 
n Prolog does not solve for unknowns on the 

right hand side of is:

?- 5 is 2 + What.
instantiation error.
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Constructing Expressions

Prolog vs. other programming 
languages
n Other programming languages evaluate 

arithmetic expressions wherever they 
occur.

n Prolog evaluates arithmetic expressions 
only in specific places.

2+2 evaluates to 4 only when it is an argument 
of the predicates of the following table; the rest 
of the time it is just a data structure consisting 
of 2, +, and 2.
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Built-in Predicates that Evaluate 
Expressions

Succeeds if Expr1 =< Expr2Expr1 =< Expr2

Succeeds if Expr1 >= Expr2Expr1 >= Expr2

Succeeds if Expr1 < Expr2Expr1 < Expr2

Succeeds if Expr1 > Expr2Expr1 > Expr2

Succeeds if results of the expressions are not 
equal.

Expr1 =\= Expr2

Succeeds if results of both expressions are 
equal.

Expr1 =:= Expr2

Evaluates Expr and unifies result with RR is Expr
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Constructing Expressions

There is a clear difference between:
n is, which takes an expression (on the right), 

evaluates it, and unifies the result with its 
argument on the left.

n =:=, which evaluates two expressions and 
compares the results.

n =, which unifies two terms (which need not be 
expressions and, if expressions, will not be 
evaluated).
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Constructing Expressions: 
examples

?- What is 2+3.
What = 5 % Evaluates 2+3, unify result with What

?- 4+1 =:= 2+3.
yes % Evaluates 4+1 and 2+3, compare results

?- What = 2+3
What = 2+3 % Unify What with the expression 2+3
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Topics

Examples
n Execution trace
n Controlling backtracking

Lists
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Lists

One of the most important Prolog data 
structures.
A list is an ordered sequence of zero or 
more terms written between square 
brackets and separated by commas.

[alpha,beta,gamma,delta]
[1,2,3,go]
[(2+2),in(austin,texas),-4.356,X]
[[a,list,within],a,list]

116Chapter 16: Logic Programming

Lists

The elements of a list can be Prolog terms 
of any kind, including other lists.
n The element [a] is not equivalent to the atom 
a.

The empty list is written [].
List can be constructed or decomposed 
through unification.
n An entire list can match a single variable

Unify With Result
[a,b,c] X X = [a,b,c]
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Lists

n Corresponding elements of two lists can be 
unified one by one.
Unify With Result
[X,Y,Z] [a,b,c]
[X,b,Z] [a,Y,c]

n This also applies to lists or structures 
embedded within lists.
Unify With Result
[[a,b],c] [X,Y]
[a(b),c(X)] [Z,c(a)]

X=a, Y=b, Z=c
X=a, Y=b, Z=c

X=[a,b], Y=c
X=a, Z=a(b)
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Lists: head & tail

Any list can be divided into head and tail
by the symbol |
n The head of a list is the first element

n The tail is a list of the remaining elements 
(and can be empty).

n The tail of a list is always a list; the head of a list 
is an element.

119Chapter 16: Logic Programming

Lists: examples

Every nonempty list has a head and a tail
[a|[b,c,d]] = [a,b,c,d]
[a|[]] = [a]
The term [X|Y] unifies with any 
nonempty list, instantiating X to the head 
and Y to the tail
Unify With Result
[X|Y] [a,b,c,d] X=a, Y=[b,c,d]
[X|Y] [a] X=a, Y=[]
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Lists: examples

Unify With Result
[X,Y|Z] [a,b,c]
[X,Y|Z] [a,b,c,d]
[X,Y,Z|A] [a,b,c]
[X,Y,Z|A]   [a,b]
[X,Y,a]     [Z,b,Z]
[X,Y|Z]     [a|W]

X=a, Y=b, Z=[c]
X=a, Y=b, Z=[c,d]
X=a, Y=b, Z=c, A=[]
fails
X=Z=a, Y=b
X=a, W=[Y|Z]
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Lists: internal representation

The previous representation is only the 
external appearance of lists.
All structured objects in Prolog are trees.
n The head and the tail are combined into a 

structure by a special functor ‘.’
.(Head, Tail)

Example:
[ann,tennis,tom,skiing]
.(ann,.(tennis,.(tom,.(skiing,[]))))

122Chapter 16: Logic Programming

Lists: internal representation

Both notations can be 
used.
The square bracket 
notation is normally 
preferred.
Internally, they are 
represented as binary 
trees.

.

.

.

.

ann

tennis

tom

skiing [ ]
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Lists: recursion

To fully exploit the power of lists:
n A way to work with lists elements without 

specifying their positions in advanced.

A repetitive procedure that will work their 
way along a list, searching for a particular 
element or performing some operation on 
every element encountered.
n Repetition is expressed in Prolog by using 

recursion .
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Lists: recursion

In order to solve a problem, perform some 
action and then solve a similar problem of 
the same type using the same procedure.
The process terminates when the problem 
becomes so small that the procedure can 
solve it in one step without calling itself 
again.
Some common operations on lists: 
membership, concatenation, adding an 
item to a list, etc
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Lists: membership

A predicate member(X,L) succeeds if X
is an element of the list L. 
Examples:
?- member(b,[a,b,c]).

yes
?- member(b,[a,[b,c]]).

no
?- member([b,c],[a,[b,c]]).

yes
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Lists: membership

What can we say about the membership 
relation?
In general, this relationship can be based on 
the following observation:

X is a member of L if either
(1) X is the head of L , or
(2) X is a member of the tail of L.
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Lists: membership

Identify two special case that are not 
repetitive
n If L is empty, fail with no further action (nothing is 

a member of the empty list).
n If X is the first element of L, succeed with no 

further action (the element was found).
To solve the first special case: make sure in 
all clauses that the second argument is 
something that will not unify with an empty 
list.
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Lists: membership

The second argument should be a list that has both a 
head and a tail.

n The second special case (a simple clause):

member(X,[X|Tail]).

The recursive part (“X is a member of L if X is a 
member of the tail of L”) can be expressed as:
member(X,[Head|Tail]):-

member(X,Tail).
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Lists: concatenation

The predicate concatenate or append 
combines to lists into a single list.
Examples:

?- concatenate([a,b,c],[d,e,f],X).
X = [a,b,c,d,e,f].

Can we use ‘|’? [[a,b,c]|[d,e,f]] 

is equivalent to [[a,b,c],d,e,f].

Strategy: work through the first list element by 
element, adding elements one by one to the 
second list.
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Lists: concatenation

The definition concatenation(L1,L2,L3)
will have again two cases, depending on 
the first argument, L1:

(1) Since the first list will be shortened, it will 
eventually become empty. So, if the first 
argument is an empty list then the second 
and the third arguments must be the same 
list.

concatenate([],L,L).
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Lists: concatenation
(2) If the first argument is a non-empty list then it 
has a head and a tail. The new list have the 
same head and the concatenation of the tail with 
the second list.

concatenate([X|L1],L2,[X|L3]):-
concatenate(L1,L2,L3).

X

X L1 L2

L3

[X|L1]

L3

[X|L3] 132Chapter 16: Logic Programming

Lists: concatenation

Examples:
?- concatenate([a,[b,c],d],[a,[],b],X).

X = [a,[b,c],d,a,[],b]
?- concatenate([a,b,c],X,[a,b,c,d,e,f]).

X = [d,e,f]
?- concatenate(X,[d,e,f],[a,b,c,d,e,f]).

X = [a,b,c]
?- concatenate(X,Y,[a,b,c,d]).

X = []  Y = [a,b,c,d]
X = [a]  Y = [b,c,d] X = [a,b]  Y = [c,d]
X = [a,b,c]  Y = [d] X = [a,b,c,d]  Y = []
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Lists: adding an item

To add an item to a list, it is easier to put 
the new item in front of the list so that it 
becomes the new head.

add(X,L,[X|L]).
Examples:
?- add(0,[1,2,3],L).

L = [0,1,2,3]
?- add(X,[b,c,d],[a,b,c,d]).

L = a
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Lists: deleting an item

The delete operation delete(X,L,L1) 
deletes an item X from a list L, where L1 is 
equal to the list L with the item X removed.
(1) If X is the head of the list then the result after 

the deletion is the tail of the list. 
delete(X,[X|Tail],Tail).

(2) If X is in the tail then it is deleted from there.

delete(X,[Y|Tail],[Y|Tail1]):-
delete(X,Tail,Tail1).
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Lists: deleting an item

Delete, like member, is also non-deterministic in 
nature.
n If there are several occurrences of X in the list then 

delete will be able to delete anyone of them by 
backtracking.

n Each alternative execution will only delete one 
occurrence of X, leaving the others untouched.

?- delete(a,[a,b,a,a],L).
L = [b,a,a];
L = [a,b,a];
L = [a,b,a];
no
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Lists: counting list elements

This is the recursive algorithm to count 
elements of a list:
n If the list is empty, it has 0 elements.

list_length([],0).
n Otherwise, skip over the first element, count 

the number of elements remaining and add 1.
list_length([_|Tail],K) :-

list_length(Tail,J).
K is J+1.
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Lists: reversing a list

Recursive algorithm for reversing the order 
of elements in a list:
(1) Split the original list into a head and tail.

(2) Recursively reverse the tail of the original 
list.

(3) Make a list whose only element is the head 
of the original list.

(4) Concatenate the reversed tail of the original 
list with the list created in step 3.
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Lists: reversing a list
The list gets shorter every time, the 
limiting case is an empty list, which Prolog 
must return unchanged.
reverse([],[]).
reverse([Head|Tail],Result) :-

reverse(Tail,ReverseTail),
concatenate(ReverseTail,[Head],Result).

Example:
?- reverse([a,b,c,d],X). 

X = [d,c,b,a]
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Family Facts

parent(pam,tom).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

female(pam).
male(tom).
male(bob).
female(liz).
female(ann).
female(pat).
male(jim).
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Controlling backtracking: 
example

Consider the double step function. The 
relation between X and Y can be specified 
by three rules:
n Rule 1: if X < 3 then Y = 0

n Rule 2: If 3 ≤ X and X < 6 then Y = 2

n Rule 3: if 6 ≤ X then Y = 4
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Controlling backtracking: 
experiment 1

f(X,0) :- X < 3.
f(X,2) :- 3 =< X, X < 6.
f(X,4) :- 6 =< X.

Question: ?- f(1,Y), 2 < Y.
The first goal f(1,Y), Y becomes instantiated to 0.
The second goal becomes 2 < 0 which fails, and so 
does the whole goal list.
Before admitting that the goal list is not satisfiable, 
Prolog tries, through backtracking, two useless 
alternatives.
The three rules about the f relation are mutually 
exclusive so that one of them at most will succeed.
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Controlling backtracking: 
experiment 2

f(X,0) :- X < 3, !.
f(X,2) :- X < 6, !.
f(X,4).

Equivalent to these three rules:

if X <3 then Y =0,
otherwise if X < 6 then Y = 2,
otherwise Y = 4
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Examples using cut

Computing maximum
max(X,Y,X) :- X >= Y, !.
max(X,Y,Y).

Single-solution membership
member(X,[X|L]) :- !.
member(X,[Y|L) :- member(X,L).

Classification into categories
class(X, fighter) :- beat(X,_),beat(_,X),!.
class(X,winner) :- beat(X,_), !.
class(X, sportsman) :- beat(_,X).
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Input and Output

The build-in predicate read is used for 
reading terms from the current input. 
The goal read(X) will cause the next term, 
T, to be read, and this term will be matched 
with X.
n If X is a variable then X will be instantiated to 
T.

n If matching does not succeed the the goal 
fails.
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Input and Output

n This predicate is deterministic, so in the case 
of failure there will be no backtracking to input 
another term.

The build-in predicate write is used for 
writing terms to the current output. 
n This predicate ‘knows’ to display any term no 

matter how complicated it may be.
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Constructing and Decomposing 
Atoms

An atom can be converted to a sequence 
of characters using the build-in predicate 
name.
n This predicate relates atoms and their ASCII 

codes.
n name(zx232,[122,120,50,51,50]).

Two typical uses:
1. Given an atom, break it down into single 

characters.
2. Given a list of characters, combine them into 

an atom
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Testing the Type of Terms

Sometimes it is useful to know what is the 
type of some value.
Example: if we want to add the values of 
two variables X and Y by: Z is X + Y.
n Before this goal is executed, X and Y have to 

be instantiated to integers.
The build-in predicate integer(X) is true if 
X is an integer or if it is a variable whose 
value is an integer.
n X must ‘currently stand for’ an integer.
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Testing the Type of Terms

var(X) succeeds if X is currently an 
uninstantiated variable.
nonvar(X) succeeds if X is a term other 
than a variable, or X is an already 
instantiated variable.
atom(X) is true if X currently stands for an 
atom.
atomic(X) is true if X currently stands for 
an integer or an atom.

149Chapter 16: Logic Programming

Testing the Type of Terms

compound(X) succeeds if X is a compound 
term (a structure, including lists but not []).
number(X) succeeds if X is a number 
(integer of floating-point).
float(X) succeeds if X is a floating-point 
number. 
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Constructing and Decomposing 
Terms

There are three build-in predicates for 
decomposing terms and constructing new 
terms.
n Term=..L is true if L is a list that contains the 

principal functor of Term, followed by its 
arguments.

n functor(Term,F,N) is true if F is the principal 
functor of Term and N is the arity of F.

n arg(N,Term,A) is true if A is the Nth argument 
in Term , assuming that arguments are 
numbered from left to right starting with 1.
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151Chapter 16: Logic Programming

Finding all Solutions to a Query

Prolog can generate, by backtracking, all 
the objects, one by one, that satisfy some 
goal.
n Each time a new solution is generated, the 

previous one disappears and is not accessible 
any more.

n Sometime we would prefer to have all 
generated objects available together.
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Finding all Solutions to a Query

findall(T,G,L) find each solution to G; 
instantiates variables to T to the values 
that they have in that solution; and adds 
that instantiation of T to L.
bagof(T,G,L) like findall except for its 
treatment of the free variables of G (those 
that do not occur in T).
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Finding all Solutions to a Query

n Whereas findall would try all possible 
values of all variables, bagof will pick the first 
set for the free variables that succeeds, and 
use only that set of values when finding the 
solution in L.

n If you ask for an alternative solution to bagof, 
you will get the results of trying another set of 
values for the free variables.

setof(T,G,L) like bagof but the elements 
of L are sorted into alphabetical order and 
duplicates are removed.


