
1

Chapter 16

Logic Programming

2Chapter 16: Logic Programming

Topics

Introduction
Predicate Calculus
Propositions
Clausal Form
Horn Clauses

3Chapter 16: Logic Programming

Logic Programming Paradigm

AKA Declarative Paradigm
n The programmer

Declares the goal of the computation (specification of results
are stated).
Does not declare a detailed algorithm by which these goals
are to be achieved.

Application domain
n Database design
n Natural language processing
n Artificial Intelligence

Automatic theorem proving
Example language: Prolog

4Chapter 16: Logic Programming

Logic Programming

Instead of providing implementation, execute
specification.
n Relieves the programmer of specifying the

implementation.
n Express programs in a form of symbolic logic.

Declarative specification:
n Given an element x and a list L, to prove that x is in
L, proceed as follows:

Prove that L is [x].
Otherwise, split L into L1 and L2 and prove one of the
following:
n x is in L1 or
n x is in L2

5Chapter 16: Logic Programming

Logic Programming

Less effort to write, but implementation
may be very inefficient.
n Requires that the execution engine be more

complex.

n Use a logical inferencing (INFERENCE ENGINE)

process to produce results

6Chapter 16: Logic Programming

Introduction to Predicate
Calculus

Symbolic logic can be used for the basic
needs of formal logic:
n Express propositions
n Express relationships between propositions
n Describe how new propositions can be

inferred from other propositions
Particular form of symbolic logic used for
logic programming is called first-order
predicate calculus

2

7Chapter 16: Logic Programming

Introduction to Predicate
Calculus

Proposition: a logical statement that
may or may not be true.
n Consists of objects and relationships of

objects to each other.
Can either assert truth (“john speaks Russian”) or
query existing knowledge base (“does john speak
Russian”).

Can contain variables, which can become bound
speaks(x,Russian).

8Chapter 16: Logic Programming

Introduction to Predicate
Calculus

Example (English statements – Predicate Calculus)

n 0 is a natural number

natural(0).

n 2 is a natural number

natural(2).

n For all x, if x is a natural number, then so is the successor o f x.

For all x, natural(x) à natural(successor(x)).

n -1 is a natural number

natural(-1).

9Chapter 16: Logic Programming

Introduction to Predicate
Calculus

First and third logical statements are axioms for the
natural numbers.

n Statements that are assumed to be true and from which
all true statements about natural numbers can be proved.

Second logical statement can be proved from the
previous axioms.
n 2 = successor(successor(0)).

n natural(0) à natural(successor(successor(0)).

Fourth logical statement cannot be proved from the
axioms and so can be assumed to be false.

10Chapter 16: Logic Programming

Predicate Calculus: statements

Predicate calculus classifies the different
parts of statements as:

1. Constants . These are usually number or names.
Sometimes they are called atoms, since they
cannot be broken down into subparts.
n Example: 1, 0, true, false

2. Predicates. These are names for functions that
are true or false, like Boolean functions in a
program.
n Can take any number of arguments.
n Example: the predicate natural takes one argument.

11Chapter 16: Logic Programming

Predicate Calculus: statements

3. Functions . Predicate calculus distinguishes
between functions that are true or false – these are
predicates – and all other functions, which represent
non-Boolean values.
n Example: successor

4. Variables . Variables stand for as yet unspecified
quantities.
n Example: x

5. Connectives . These include the operations and,
or, and not, just like the operations on Boolean
data in programming languages. Additional
connectives are implication and equivalence

12Chapter 16: Logic Programming

Predicate Calculus: table of
connectives

Logically equivalent
to ¬a∪b

a implies b
b implies a

a ⊃ b
a ⊂ b

⊃

⊂

Implication

True if a and b are
both true or both
false

a is equivalent to ba ≡ b≡Equivalence

True if either a or b
(or both) is true

a or ba ∪ b∪Disjunction

True if a and b are
both true

a and ba ∩ b∩Conjunction

True if a is false;
otherwise false

not a¬a¬Negation

NotesMeaningExampleSymbolName

3

13Chapter 16: Logic Programming

Predicate Calculus: connectives

By convention, negation has highest precedence.
Conjunctions, disjunctions, and equivalence have
higher precedence than implication (in that
order).
n Example: p ∪ q ∩ r ⊃ ¬s ∪ t is equivalent to

((p ∪ (q ∩ r)) ⊃ ((¬s) ∪ t))

14Chapter 16: Logic Programming

Predicate Calculus: quantifiers

6. Quantifiers. These are operations that introduce
variables.
n Universal Quantifier: “for all”
n Existential Quantifier: “there exists”
n A variable introduced by a quantifier is said to be bound

by the quantifier.
n It is possible for variables also to be free (not bound by

any quantifier).
n Quantifiers have higher precedence than any of the

operators.

15Chapter 16: Logic Programming

Predicate Calculus: table of
quantifiers

There exists a value of X such that P is true∃ X P∃Existential

For all X, P is true∀ X P∀Universal

MeaningExampleSymbolName

16Chapter 16: Logic Programming

Predicate Calculus: quantifiers

Examples:
n ∀x(speaks(x,Russian))

True if everyone on the planet speaks Russian; false
otherwise.

n ∃x(speaks(x,Russian))
True if at least one person on the planet speaks Russian;
false otherwise.

n ∀x ∃y(speaks(x,y))
True if every person x speaks some language y; false
otherwise.

n ∃ x ∀ y(speaks(x,y))
True if at least one person on the planet speaks every
language y; false otherwise.

17Chapter 16: Logic Programming

Predicate Calculus: statements

7. Punctuation Symbols . These include left and
right parentheses the coma, and the period.
Parentheses can be left out based on common
conventions about the precedence of connectives.

l Arguments to predicates and functions can
only be terms, that is, combinations of
variables, constants, and functions. Terms
cannot contain predicates, quantifiers, or
connectives.

18Chapter 16: Logic Programming

Predicate Calculus: examples
prime(n)
n True if the integer value of n is a prime number.

0 ≤ x + y
n True if the real sum of x and y is nonnegative.

speaks(x,y)
n True if the person x speaks language y.

0 ≤ x ∩ + x ≤ 1
n True if x is between 0 and 1, inclusive.

speaks(x,Russian)∩speaks(y,Russian) ⊃
talkswith(x,y)
n True if the fact that both x and y speak Russian implies that x talks with y

∀x(¬literate(x) ⊃ (¬writes(x)∩ ∃y(reads(x,y)∩
book(y))))
n True if every illiterate person x does not write and has not read any book

y.

4

19Chapter 16: Logic Programming

Predicate Calculus: tautologies

Tautologies : Propositions that are true for all
possible values of their variables.
n Example: q ∪ ¬q

Predicates that are true for some particular
assignment of values to their variables are called
satisfiable.
n Example: speaks(x,Russian)

If at least one person in the planet speaks Russian.

Predicates that are true for all possible
assignments of values to their variables are valid.
n Example: even(y) ∪ odd(y)

It is true for all integers
20Chapter 16: Logic Programming

Propositions: Summary

Objects in propositions are represented by
simple terms: either constants or variables
Constant: a symbol that represents an
object
Variable: a symbol that can represent
different objects at different times
n Different from variables in imperative

languages

21Chapter 16: Logic Programming

Propositions: Summary

Simplest propositions are called atomic
propositions which consist of compound
terms
A compound term is composed of two
parts
n Functor: function symbol that names the

relationship.

n Ordered list of parameters (tuple)

22Chapter 16: Logic Programming

Propositions: Summary

Examples:
student(jon)
like(seth, OSX)
like(nick, windows)
like(jim, linux)

Propositions can be stated in two forms:
n Fact: proposition is assumed to be true
n Query: truth of proposition is to be determined

Compound proposition:
n Have two or more atomic propositions
n Propositions are connected by operators

23Chapter 16: Logic Programming

Clausal Form

Problem of predicate calculus:
n Too many ways to state the same thing

Solution: use a standard form for propositions
All propositions can be expressed in clausal
form:

B1 ∪ B2 ∪ … ∪ Bn ⊂ A1 ∩ A2 ∩ … ∩ Am
n means if all the As are true, then at least one B is true

Characteristics of clausal form:
n Existential quantifiers are not required.
n Universal quantifiers are implicit with use of variables.
n No operator other than conjunctions and disjunctions.

24Chapter 16: Logic Programming

Clausal Form

Antecedent: right side of proposition.
Consequent: left side of the proposition.

likes(bob,mary) ⊂ likes(bob,redheads)∩redhead(mary).

A proposition with zero or one terms in the
consequent is called a Horn clause.

antecedentconsequent

5

25Chapter 16: Logic Programming

Horn Clauses

A Horn clause has a head h, which is a
predicate, and a body, which is a list of
predicates p1,p2,…pn

p1,p2,…pn à h

n In a Horn clause the head is true if every predicate of
the body is true (simultaneously).

body head

26Chapter 16: Logic Programming

Horn Clauses: facts and queries

Fact: a Horn clause without body.
n They are called headless Horn clauses.

à h or just h
n It means that h is always true.

Example: à mammal(human).

Query: a Horn clause without a head.
n The “opposite” of a fact.

Example: mammal(human) à

27Chapter 16: Logic Programming

From Predicates to Horn
Clauses

There is a limited correspondence between
Horn clauses and predicates.
n Horn clauses can be written equivalently as a

predicate
HC: snowing(C) ß precipitation(C),freezing(C).

PC: snowing(C) ⊂ precipitation(C)∩freezing(C).

n Not all predicates can be translated into Horn
clauses.

28Chapter 16: Logic Programming

Properties of Predicate Logic
Expressions

¬ ∃x P(x) ≡ ∀ x ¬P(x)¬∀x P(x) ≡ ∃x ¬P(x)Quantification

p ⊃ q ≡ ¬p ∨ qImplication

¬ (p ∧ q) ≡ ¬p ∨ ¬ q¬ (p ∨ q) ≡ ¬p ∧ ¬ qdeMorgan

p ∧ ¬p ≡ falsep ∨ ¬p ≡ trueIdentity

p ∧ p ≡ pp ∨ p ≡ pIdempotence

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)p ∨ q ∧ r ≡ (p ∨ q) ∧ (p ∨ r)Distributivity

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)Associativity

p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ pCommutativity

MeaningProperty

29Chapter 16: Logic Programming

From Predicates to Horn
Clauses

Six-step procedure that will, whenever possible,
translate a predicate p into a Horn clause.

1. Eliminate implications from p, using the implication
property.

2. Move negation inward in p, using the deMorgan and
quantification properties, so that only individual terms
are negated.

3. Eliminate existential quantifiers from p, using a
technique called skolemization. Here, the existentially
quantified variable is replaced by a unique constant.
n For example, the expression ∃xP(x) is replaced by P(c),

where c is an arbitrarily chosen constant in the domain of x.
30Chapter 16: Logic Programming

From Predicates to Horn
Clauses

4. Move all universal quantifiers to the beginning of
p; as long as there are no naming conflicts, this
step does not change the meaning of p. Assuming
that all variables are universally quantified, we can
drop the quantifiers without changing the meaning
of the predicates.

5. Use the distributive, associative, and commutative
properties to convert p to conjunctive normal form.
In this form, the conjunction and disjunction
operators are nested no more than two level deep,
with conjunctions at the highest level.

6

31Chapter 16: Logic Programming

From Predicates to Horn
Clauses

6. Convert the embedded disjunctions to implications,
using the implication property. If each of these
implications has a single term on its right, then each
can be rewritten as a series of Horn clauses
equivalent to p.

l Example:
∀x(¬literate(x)⊃(¬writes(x)∧¬∃y(reads(x,y)∧book(y))))

l Example:
∀x(literate(x)⊃reads(x)∨writes(x))

32Chapter 16: Logic Programming

Topics

Proving Theorems
n Resolution
n Instantiation and Unification

Prolog
n Terms
n Clauses

n Inference Process
n Backtracking

33Chapter 16: Logic Programming

Predicate Calculus and Proving
Theorems

A use of propositions is to discover new
theorems that can be inferred from known
axioms and theorems
Resolution: the process of computing
inferred propositions from given
propositions
n Resolution principle is similar to the idea of

transitivity in algebra.

34Chapter 16: Logic Programming

Resolution

Making a single inference from a pair of
Horn clauses.
n If h is the head of a Horn clause and it

matches with one of the terms of another
Horn clause, then that term can be replaced
by h.

The Horn clauses:
h ß terms
t ß t1, h, t2

The second clause is resolved to
t ß t1, terms, t2

35Chapter 16: Logic Programming

Resolution: example

Consider the following clauses:
speaks(Mary,English).
talkswith(X,Y) ß speaks(X,L), speaks(Y,L), X≠Y

Resolution allow us to deduce:
talkswith(Mary,Y) ß speaks(Mary,English),

speaks(Y,English), Mary≠Y
Variables X and L are assigned the values “Mary”
and “English” in the second rule.
The assignment of values to values during resolution
is called instantiation .

36Chapter 16: Logic Programming

Unification and Instantiation

Unification: finding values for variables in
propositions that allows matching process
to succeed
Instantiation: assigning temporary values
to variables to allow unification to succeed
After instantiating a variable with a value,
if matching fails, may need to backtrack
and instantiate with a different value.

7

37Chapter 16: Logic Programming

Resolution: Theorem Proving

Use proof by contradiction.
Hypotheses: a set of pertinent propositions
Goal: negation of theorem stated as a
proposition.
Theorem is proved by finding an
inconsistency.

38Chapter 16: Logic Programming

The language Prolog

The most widely used logic programming
language.
Prolog in a nutshell
n Uses Horn clauses

Almost identical notation of Horn clauses, except
the implication arrow “ß” is replaced by a colon
followed by a dash “:-”.

n Implements resolution using strict linear
“depth first” strategy and a unification
algorithm.

39Chapter 16: Logic Programming

A Prolog Program

Prolog approach.
n Describe known facts and relationships.

A program consists of a sequence of Horn
clauses.
n Clauses are implications of the form

p1 if p2 … &pk written as p1 :- p2 , … ,pk where every
p is a term.
n p1 is called the head and p2 , … ,pk is the body.
n The body is a list of goals separated by commas

(conjunctions).

40Chapter 16: Logic Programming

Terms

All Prolog statements are constructed from
terms.

Atoms

Numbers
Constants

Variables

Simple Terms

Compound/Complex terms (structures)

41Chapter 16: Logic Programming

Terms: atoms

Atoms are used as names of individuals
and predicates.
Atoms can be constructed in three ways:

1. Strings of letters, digits and the underscore
character, starting with a lower-case letter.
x
vancouver
ax123aBCD
abc_123_etc

42Chapter 16: Logic Programming

Terms: atoms
2. Strings of special characters .

Some of these have a predefined meaning (: -).
-->
==>

3. String of characters enclosed in single
quotes.

It can contain any character.
‘Florida’
’12$12$’
‘ back\\slashes’
’32’ is an atom, not equal to the number 32.
A zero length atom is written ‘’

8

43Chapter 16: Logic Programming

Terms: atoms

Internal representation:
n Atoms are not character strings, they are

locations in a symbol table.

n Only one copy of each atom is stored.
n All occurrences are replaced by pointers to its

location in the symbol table.
abracadabraabracazam= abracadabraabracazam
a = b

Comparison takes the same amount of time.
n Pointers get compared rather than the strings of

characters.
44Chapter 16: Logic Programming

Terms: numbers

Integer
n Useful for task such as counting the elements

of a list.

Real
n Not used very much in typical Prolog

programming.

45Chapter 16: Logic Programming

Terms: variables

Stand for objects that we cannot name.
Begins with a capital letter or ‘_’.
n X
n _value
n Mother

A variable can be
n Instantiated when there is an object that it

stands for.
n Uninstantiated when what the variable it

stands for is not yet known.
46Chapter 16: Logic Programming

Terms: variables

Question containing a variable:
n Search through all facts to find an object that

the variable could stand for.

Anonymous variable (_)
n A special variable that matches anything, but

never takes on a value.
n Successive anonymous variables in the same

clause do not take on the same value.

47Chapter 16: Logic Programming

Terms: structures
Consists of a functor followed by a
sequence of arguments.
n The functor must be an atom.

n Arguments can be any kind of terms (including
other structures).

n The outermost functor (f/2, in this case) is
called the principal functor of the structure.

f(g(h,i),j(k,1))
f

g j

h i k l 48Chapter 16: Logic Programming

Terms: structures

Internal representation
n A structure is a linked tree made of pointers to

its substructures and to entries in the symbol
table.

9

49Chapter 16: Logic Programming

Prolog Clauses

Prolog clauses are of three types:
n Facts: declare things that are always,

unconditionally true.

n Rules: declare things that are true, depending
on a given condition.

n By means of questions users can ask the
program what things are true.

50Chapter 16: Logic Programming

Prolog Clauses: characteristics

A Prolog clause:
n Arbitrary number of arguments (parameters).
n A predicate that takes N arguments is called N-

placed predicate.
n A one-place predicate describes a property of

one individual; a two-place predicate describes
a relation between two individuals.

n The number of arguments that a predicate
takes is called its arity .

51Chapter 16: Logic Programming

Prolog Clauses: characteristics

n Two distinct predicates can have the same
name if they have different arities.

mother(pam) meaning Pam is a mother.
mother(pam,bob) meaning Pam is the mother of
Bob.

n A predicate is identified by giving its name, a
slash, and its arity.

mother/1.
mother/2.

n Every Prolog statement is terminated by a
period.

52Chapter 16: Logic Programming

Facts

Define relationships between objects.
Sometimes called ground clauses because
they are the basis from which other
information is inferred.
Facts are clauses that have an empty body.
Facts are written as:
name_of_relationship(object,…,object).

A collection of facts and rules is called a
database or knowledge base.

53Chapter 16: Logic Programming

Facts: examples

parent(tom,bob).

parent(pam,bob).

parent(tom,liz).

parent(bob,ann).

parent(bob,pat).

parent(pat,jim).

PAM TOM

LIZBOB

PATANN

JIM

Family Relation

54Chapter 16: Logic Programming

Rules

Specify things that are true if some
condition is satisfied.
Rules are used to say that a fact depends
on a group of other facts.
A rules consists of a head and a body.
n Connected by the symbol ‘:-’ (if).

n The head describes what fact the rule is
intended to define.

n The body describes the conjunctions of goals
that must be satisfied for the head to be true.

10

55Chapter 16: Logic Programming

Rules: examples

For all X and Y,
Y is an offspring of X if

X is a parent of Y.

?-offspring(Y,X):-parent(X,Y).

head/conclusion body/condition

56Chapter 16: Logic Programming

Rules: examples

?-mother(X,Y):- parent(X,Y),female(X)

parent

X

Y

mother

female

57Chapter 16: Logic Programming

Rules: examples

?-grandparent(X,Z):- parent(X,Y),parent(Y,Z).

parent

X

Y grandparent

Z

parent

58Chapter 16: Logic Programming

Rules: examples

?-sister(X,Y):- parent(Z,X), parent(Z,Y),
female(X).

parent

X Y

sister

Z
parent

female

59Chapter 16: Logic Programming

Rules: exercise

Define the relation aunt(X,Y)

60Chapter 16: Logic Programming

Questions
How do we use Prolog programs?
n By posing queries (a query is a request for the

computer to do something.)
Questions are clauses that only have the
body.
n Search through the database.
n Look for facts that match the fact in question.

Two facts match if their predicates and corresponding
arguments are the same.
n YES: Prolog finds a match
n No: Prolog does not find a match (nothing matches the

question vs. false)

11

61Chapter 16: Logic Programming

Questions: example

?-parent(bob,pat).

PAM TOM

LIZBOB

PATANN

JIM

Family Relation

User Queries Prolog’s Answers

?-parent(liz,pat).

?-parent(tom,ben).

?-parent(X,liz).

?-parent(bob,X).

?-parent(X,Y).

yes

no

no

X=tom

X=ann
X=pat

X=pam
Y=bob;
X=tom
Y=bob;
…

62Chapter 16: Logic Programming

Conjunctions

More complicated relationships.
Satisfy two or more separate goals.
Commas are understood as conjunctions.
Question containing conjunctions:
n Try to satisfy each goal in turn (searching the

database).

n All goals have to be satisfied.

63Chapter 16: Logic Programming

Complex Queries: example

1. Who is a parent of Jim?
Assume that this is some Y.

2. Who is a parent of Y?
Assume that this is some X.

parent

X

Y

parent

jim

grandparent?-parent(X,Y),parent(Y,jim).

X=bob
Y=pat

Who is a grandfather of Jim?

64Chapter 16: Logic Programming

Complex Queries: example

1. Who is a child of Tom?
Assume that this is some X.

2. Who is a child of X?
Assume that this is some Y.

?-parent(tom,X),parent(X,Y).
X=bob
Y=ann

X=bob
Y=pat

parent

tom

X

parent

Y

grandchildren

Who are Tom’s grandchildren?

65Chapter 16: Logic Programming

1. Who is a parent, X, of Ann?
2. Is (this same) X a parent of Pat?

Complex Queries: example

?-parent(X,ann),parent(X,pat).
X=bob

Do Ann and Pat have a
common parent?

66Chapter 16: Logic Programming

Complex Queries: exercises

What will be Prolog’s answers to the following
questions?

1. ?-parent(jim,X).

2. ?-parent(X,jim).

3. ?-parent(pam,X), parent(X,pat).

4. ?-parent(pam,X),parent(X,Y),parent(Y,jim).

Formulate in Prolog the following questions:

1. Who is Pat’s parent?
2. Does liz have a child?
3. Who is Pat’s grandparent?

12

67Chapter 16: Logic Programming

Matching / Unification

Two terms (term1 and term2) can be
unified (matched) if they are alike or can
be made alike by instantiation.
n Instantiation: make one variable the same as

another.

68Chapter 16: Logic Programming

Matching / Unification
(1) If term1 and term2 are constants

Same atom or same number .
(2) If term1 is a variable and term2 is any type

of term
term1 is instantiated to term2

(3) If term1 and term2 are variables
They are instantiated to each other (share values).

(4) If term1 and term2 are complex terms
a. They have the same functor and arity.
b. All their corresponding arguments match.
c. The variable instantiations are compatible.

(5) Two terms match if and only if it follows from
the previous four clauses that they match.

constants

variables

complex
terms

69Chapter 16: Logic Programming

Unification: examples

?-2=2.

User Queries Prolog’s Answers

?-bob=jim.
?-’bob’=bob.
?-’2’=2.
?-bob=X.

?-X=Y.

yes
no
yes
no
X=bob
yes
yes

?-X=bob. X=jim. no

?-kill(shoot(gun),Y))=kill(X,stab(knife)).
X= shoot(gun)
Y=stab(knife)
yes

?-kill(shoot(gun),stab(knife))=kill(X,stab(Y)).
X= shoot(gun)
Y=knife
yes

70Chapter 16: Logic Programming

Inference Process of Prolog

Queries are called goals
If a goal is a compound proposition, each
of the facts is a subgoal
To prove a goal is true, must find a chain
of inference rules and/or facts. For goal
Q:
B :- A
C :- B
…
Q :- P

71Chapter 16: Logic Programming

Inference Process of Prolog

Process of proving a subgoal is called matching,
satisfying , or resolution.
Bottom-up resolution, forward chaining
n Begin with facts and rules of database and attempt to

find sequence that leads to goal
n Works well with a large set of possibly correct

answers

Top-down resolution, backward chaining
n Begin with goal and attempt to find sequence that

leads to set of facts in database.

72Chapter 16: Logic Programming

Inference Process of Prolog
n works well with a small set of possibly correct

answers
Prolog implementations use backward
chaining
When goal has more than one subgoal, can
use either
n Depth-first search: find a complete proof for the

first subgoal before working on others
n Breadth-first search: work on all subgoals in

parallel.

Prolog uses depth-first search

13

73Chapter 16: Logic Programming

A Simple Prolog Knowledge
Base

A Prolog knowledge base that describes the
location of certain North American cities.

/* 1 */ located_in(atlanta,georgia).
/* 2 */ located_in(houston,texas).
/* 3 */ located_in(austin,texas).
/* 4 */ located_in(toronto,ontario).
/* 5 */ located_in(X,usa) : - located_in(X,georgia).
/* 6 */ located_in(X,usa) : - located_in(X,texas).
/* 7 */ located_in(X,canada) :- located_in(X, ontario).
/* 8 */ located_in(X,north_america) : -

located_in(X,usa).
/* 9 */ located_in(X,north_america) : -

located_in(X,canada).

74Chapter 16: Logic Programming

Inference Process: example

Query:
?- located_in(austin,north_america).

Unifies with the head of Clause 8 by instantiating X as
austin.
The right-hand side of Clause 8 becomes the new goal.
Goal: ?- located_in(austin,north_america).
Clause 8: located_in(X,north_america) :-

located_in(X,usa).
Instantiation: X = austin
New goal: ?-located_in(austin,usa).

75Chapter 16: Logic Programming

Inference Process: example

Unify the new query with Clause 6:
Goal: ?- located_in(austin,usa).
Clause 6: located_in(X,usa) :-

located_in(X,texas).
Instantiation: X = austin
New goal: ?-located_in(austin,texas).

This query matches Clause 3. Since Clause 3 does not
contain an “if”, no new query is generated and the
process terminates successfully.

76Chapter 16: Logic Programming

Backtracking

If several rules can unify with a query, how
does Prolog know which one to use?
Prolog does not know in advance which
clause will succeed but it does know how
to black out of blind alleys.
Prolog tries the rules in order in which they
are given in the knowledge base.
n If a rule does not lead to success, it backs up

and tries another

77Chapter 16: Logic Programming

Backtracking

The query ?-located_in(austin,usa)
will try to unify with Clause 5 and then,
when that fails, the computer will back up
and try Clause 6.
A good way to conceive of backtracking is
to arrange all possible paths of
computation into a tree.
Consider the query:
?- located_in(toronto,north_america).

78Chapter 16: Logic Programming

Backtracking: example

The following tree shows all the paths that
the computation might follow.

14

79Chapter 16: Logic Programming

Backtracking: example

We can prove that Toronto is in North
America if we can prove that it is in either
the U.S.A. or Canada.
If we try the U.S.A., we have to try several
states and then Canada.
Almost all paths are blind alleys.
Only the rightmost one leads to a
successful solution.

80Chapter 16: Logic Programming

Backtracking: example

Same diagram with arrows added to show
the order in which the possibilities are
tried.

81Chapter 16: Logic Programming

Backtracking: example

Whenever the computer finds it has gone
down a blind alley, it backs up to the most
recent query for which there are still
untried alternatives, and tries another
path.
When a successful answer is found, the
process stops.

82Chapter 16: Logic Programming

Prolog Syntax: comments

Two ways to delimit comments
n Anything bracketed by /* and */
n /* This is a comment */

Anything between % and the end of the
line
n % This is also a comment

83Chapter 16: Logic Programming

Sicstus

http://www.cs.sfu.ca/CC/SW/Prolog/
Linux and SunOS machines
n CSIL SunOS machines have an additional

Prolog implementation: BinProlog.

Running Sicstus Prolog
n orion% sicstus

84Chapter 16: Logic Programming

Running Sicstus

Interactive definition mode:
n The special goal [user] is used to enter interactive

definition mode.
n In interactive mode, Prolog expects goals to establish.
n ^D (i.e., the ctrl -D key) exits definition mode.

Consulting a file
n The special query

?-consult(‘family.pl’).
asks prolog to read the definitions from the named file
in quotes.

n Goals must be terminated with a period or Prolog just
waits until you enter the period.

15

85Chapter 16: Logic Programming

Running Sicstus
n To load the same program use reconsult instead of
consult.

Otherwise, there will be two copies of it in memory at the
same time.

To exit from Prolog just type the special query
?- halt.
If a single query has multiple solutions, Prolog
finds one solution and then asks whether to look
for another (until all alternatives are found or you
stop asking for them).

86Chapter 16: Logic Programming

Running Sicstus
?- located_in(X,texas).

X = houston
More (y/n) ? y
X = austin
More (y/n) ? Y
no

n The “no”at the end means there are no more
solutions.

Any of the arguments of a predicate can be
queried.
n ?- located_in(austin,X). % Names of regions that contain Austin
n ?- located_in(X,texas). % Names of cities that are in Texas
n ?- located_in(X,Y). % “What is in what?”
n ?- located_in(X,X). % “What is in itself?”

87Chapter 16: Logic Programming

Sicstus: examples

Sample Prolog session
1: orion% sicstus
SICStus 3.8.4 (sparc-solaris-5.6): Mon Jun 12 18:49:23 MET DST 2000
Licensed to cs.sfu.ca
| ?- [user].
| member(X, [X|_]).
| member(X, [_|More]) :- member(X, More).
| ^D
|{consulted user in module user, 0 msec 336 bytes}
| ?- ['data.pl'].
{consulting /cs/gard1/dma/family.pl...}
{consulted / cs/gard1/dma/family.pl in module user, 10 msec 160 bytes}
yes
| ?- parent(X,liz).
X = tom;
no
| ?- halt.
2: orion%

Chapter 16

Logic Programming

89Chapter 16: Logic Programming

Topics

Summary (resolution, unification, Prolog
search strategy)
Disjoint goals
The “cut” operator
Negative goals
Predicate “fail”
Debugger / tracer
Arithmetic
Lists

90Chapter 16: Logic Programming

Resolution
Resolution is an inference rule for Horn
clauses.
Given two clauses:
n If the head of the first clause can be matched

with one of the statements in the body of the
second clause then the first clause can be
used to replace its head in the second clause
by its body.

a ß a1,…,an.
b ß b1,…,bi,…,bm.

and bi matches a, then
b ß b1, …, bi-1, a1, …, a n, bi+1, …, bm

16

91Chapter 16: Logic Programming

Unification

Unification is the process by which
variables are instantiated so that
patterns match during resolution.
Unification is the process of making two
terms “the same” in some sense.
n ‘foo’ = foo

Prolog’s answer: yes.
Both terms are atoms.

n ‘5’ = 5
Prolog’s answer: no.
LHS is an atom and RHS is a number.

92Chapter 16: Logic Programming

Prolog’s Search Strategy

Prolog applies resolution in a strictly linear
fashion
n Replaces goals left to right.

n Considers clauses in top-to-bottom order.
n Subgoals are considered immediately once

they are set up.

n Search can be viewed as a depth-first search
on a tree of possible choices.

93

Prolog’s Search Strategy

Given the following clauses:
(1) ancestor(X,Y) :- parent(X,Z),

ancestor(Z,Y).
(2) ancestor(X,X).
(3) parent(amy,bob).

Given the goal ancestor(X,bob), Prolog’s search
strategy is left to right and depth first on the
following tree of subgoals.
n Edges are labelled by the number of the clause used by

Prolog for resolution
n Instantiation of variables are written in curly brackets. 94Chapter 16: Logic Programming

Prolog’s Search Strategy

Leaf nodes in this tree occur
n No match is found for the leftmost clause.
n All clauses have been eliminated (success).

Whenever failure occurs Prolog
backtracks up the tree to find further paths
to a leaf, releasing instantiations of
variables.

95Chapter 16: Logic Programming

Prolog’s Search Strategy

Original Prolog program:
(1) ancestor(X,Y) :- parent(X,Z),

ancestor(Z,Y).
(2) ancestor(X,X).
(3) parent(amy,bob).

Clauses in slightly different order:
(1) ancestor(X,Y) :- ancestor(Z,Y),

parent(X,Z).
(2) ancestor(X,X).
(3) parent(amy,bob).

Problem?
96Chapter 16: Logic Programming

Existential Queries

Variables in queries are existentially
quantified.

father(abraham,X)?

n Reads: “Does there exist an X such that
abraham is the father of X?”

n For convenience, existential quantification is
omitted.

17

97Chapter 16: Logic Programming

Universal Facts

Variables in facts are implicitly universally
quantified.
In general, a fact p(T1,…Tn) reads that for
all X1,…,Xk where the Xi are variables
occurring in the fact p(T1,…Tn) is true.

likes(X,apple).

From a universally quantified fact one can
deduce any instance of it.

likes(adan,apple).

98Chapter 16: Logic Programming

“Universal” Rules

Rule specifies things that are true if some
condition is satisfied.

For all X and Y,
Y is an offspring of X if

X is a parent of Y.

?-offspring(Y,X):-parent(X,Y).

99Chapter 16: Logic Programming

Disjoint Goals (“or”)

Prolog provides a semicolon, meaning “or”.
n The definition of parent could be written as a single

rule:
parent(X,Y) :- father(X,Y); mother(X,Y).

The normal way to express an “or” relation in
Prolog is to state two rules.
n The semicolon adds little or no expressive power to the

language.
n It looks so much like the comma that it often leads to

typographical errors.
n The use of semicolon is not recommended.

100Chapter 16: Logic Programming

The “Cut” Operator (!)

Automatic backtracking is one of the most
characteristic features of Prolog.
n Lead to inefficiency: explore possibilities that

lead nowhere.
The cut predicate tells the Prolog system
to forget about some of the backtrack
points.
n Discards all backtrack points that have been

recorded since execution entered the current
clause.

101Chapter 16: Logic Programming

The “Cut” Operator (!)

After executing a cut:
n It is no longer possible to try other clauses as

alternatives to the current clause.
n It is no longer possible to try alternative solutions to

subgoalspreceding the cut in the current clause.
Reduces the search space.
n “do not go to” (alternatives that we know are bound to

fail).
writename(1) :- !, write(‘One’).

Confirms the choice of a rule.
max(X,Y,Y) :- X>=Y, !.
max(X,Y,X).

102Chapter 16: Logic Programming

The “Cut” Operator (!)

Simulates an “else” statement when we are
testing cases.
n Mutually exclusive conclusions .

f(X,0) :- X=0, !.
f(X,1) :- X>0, !.
f(X,undefined).

Example: Given the knowledge base
f(X) :- g(X), !, h(X).
f(X) :- j(X).
g(a).
j(a).

What is the result of executing the query ?- f(a). ?

18

103Chapter 16: Logic Programming

Negative Goals (“not)

The special predicate \+ means “not” or
“cannot prove”.
If g is any goal, then \+ g succeeds if g
fails, and fails if g succeeds.

?- \+ likes(adan,apple).

The predicate \+ can appear only in a
query or on the right-hand side of a rule.
n It cannot appear in a fact or in the head of a

rule.

\+ likes(adan,apple).
104Chapter 16: Logic Programming

Negation as Failure

The behaviour of \+ is called negation as
failure.
n In Prolog, you cannot state a negative fact . All

you can do is conclude a negative statement if
you cannot conclude the corresponding positive
statement.

What is the definition a a person who is not a
parent?

non_parent(X,Y) :- \+ father(X,Y),
\+ mother(X,Y).

105Chapter 16: Logic Programming

Closed-World Assumption

What happens if you ask about people
who are not in the knowledge base?
The Prolog systems assumes that its
knowledge base is complete (this is
called the closed-world assumption).
n Something that cannot be proved to be

true is assumed to be false.

106Chapter 16: Logic Programming

Predicate “fail”

Predicate fail is a special symbol that
will immediately fail when Prolog
encounters it as a goal.
Cut-fail combination is used to say
that something is not true.

likes(mary,X) :- snake(X), !, fail
likes(mary,X) :- animal(X).

107Chapter 16: Logic Programming

Debugger / Tracer
The debugger allows you to trace exactly what is
happening as Prolog executes a query.
?- trace.
yes

n Return: computation is shown step by step.
n s (for “skip”): the debugger will skip to the end of the

current query (useful if the current query has a lot of
subgoalswhich you do not want to see).

n a (for “abort”): the computation will stop.

108Chapter 16: Logic Programming

Arithmetic

Prolog supports both integers and floating-point
numbers and interconvert them as needed.
Operator “is”: takes an arithmetic expression on
its right, evaluates it, and unifies the result with
its argument on the left.
?- Y is 2+2. ?- 5 is 3+3.
Y = 4
yes no
?- Z is 4.5+(3.9/2.1).
Z = 6.3571428
yes

19

109Chapter 16: Logic Programming

Arithmetic

The precedence of operators is about the
same as in other programming languages.
Prolog is not an equation solver.
n Prolog does not solve for unknowns on the

right hand side of is:

?- 5 is 2 + What.
instantiation error.

110Chapter 16: Logic Programming

Constructing Expressions

Prolog vs. other programming
languages
n Other programming languages evaluate

arithmetic expressions wherever they
occur.

n Prolog evaluates arithmetic expressions
only in specific places.

2+2 evaluates to 4 only when it is an argument
of the predicates of the following table; the rest
of the time it is just a data structure consisting
of 2, +, and 2.

111Chapter 16: Logic Programming

Built-in Predicates that Evaluate
Expressions

Succeeds if Expr1 =< Expr2Expr1 =< Expr2

Succeeds if Expr1 >= Expr2Expr1 >= Expr2

Succeeds if Expr1 < Expr2Expr1 < Expr2

Succeeds if Expr1 > Expr2Expr1 > Expr2

Succeeds if results of the expressions are not
equal.

Expr1 =\= Expr2

Succeeds if results of both expressions are
equal.

Expr1 =:= Expr2

Evaluates Expr and unifies result with RR is Expr

112Chapter 16: Logic Programming

Constructing Expressions

There is a clear difference between:
n is, which takes an expression (on the right),

evaluates it, and unifies the result with its
argument on the left.

n =:=, which evaluates two expressions and
compares the results.

n =, which unifies two terms (which need not be
expressions and, if expressions, will not be
evaluated).

113Chapter 16: Logic Programming

Constructing Expressions:
examples

?- What is 2+3.
What = 5 % Evaluates 2+3, unify result with What

?- 4+1 =:= 2+3.
yes % Evaluates 4+1 and 2+3, compare results

?- What = 2+3
What = 2+3 % Unify What with the expression 2+3

114Chapter 16: Logic Programming

Topics

Examples
n Execution trace
n Controlling backtracking

Lists

20

115Chapter 16: Logic Programming

Lists

One of the most important Prolog data
structures.
A list is an ordered sequence of zero or
more terms written between square
brackets and separated by commas.

[alpha,beta,gamma,delta]
[1,2,3,go]
[(2+2),in(austin,texas),-4.356,X]
[[a,list,within],a,list]

116Chapter 16: Logic Programming

Lists

The elements of a list can be Prolog terms
of any kind, including other lists.
n The element [a] is not equivalent to the atom
a.

The empty list is written [].
List can be constructed or decomposed
through unification.
n An entire list can match a single variable

Unify With Result
[a,b,c] X X = [a,b,c]

117Chapter 16: Logic Programming

Lists

n Corresponding elements of two lists can be
unified one by one.
Unify With Result
[X,Y,Z] [a,b,c]
[X,b,Z] [a,Y,c]

n This also applies to lists or structures
embedded within lists.
Unify With Result
[[a,b],c] [X,Y]
[a(b),c(X)] [Z,c(a)]

X=a, Y=b, Z=c
X=a, Y=b, Z=c

X=[a,b], Y=c
X=a, Z=a(b)

118Chapter 16: Logic Programming

Lists: head & tail

Any list can be divided into head and tail
by the symbol |
n The head of a list is the first element

n The tail is a list of the remaining elements
(and can be empty).

n The tail of a list is always a list; the head of a list
is an element.

119Chapter 16: Logic Programming

Lists: examples

Every nonempty list has a head and a tail
[a|[b,c,d]] = [a,b,c,d]
[a|[]] = [a]
The term [X|Y] unifies with any
nonempty list, instantiating X to the head
and Y to the tail
Unify With Result
[X|Y] [a,b,c,d] X=a, Y=[b,c,d]
[X|Y] [a] X=a, Y=[]

120Chapter 16: Logic Programming

Lists: examples

Unify With Result
[X,Y|Z] [a,b,c]
[X,Y|Z] [a,b,c,d]
[X,Y,Z|A] [a,b,c]
[X,Y,Z|A] [a,b]
[X,Y,a] [Z,b,Z]
[X,Y|Z] [a|W]

X=a, Y=b, Z=[c]
X=a, Y=b, Z=[c,d]
X=a, Y=b, Z=c, A=[]
fails
X=Z=a, Y=b
X=a, W=[Y|Z]

21

121Chapter 16: Logic Programming

Lists: internal representation

The previous representation is only the
external appearance of lists.
All structured objects in Prolog are trees.
n The head and the tail are combined into a

structure by a special functor ‘.’
.(Head, Tail)

Example:
[ann,tennis,tom,skiing]
.(ann,.(tennis,.(tom,.(skiing,[]))))

122Chapter 16: Logic Programming

Lists: internal representation

Both notations can be
used.
The square bracket
notation is normally
preferred.
Internally, they are
represented as binary
trees.

.

.

.

.

ann

tennis

tom

skiing []

123Chapter 16: Logic Programming

Lists: recursion

To fully exploit the power of lists:
n A way to work with lists elements without

specifying their positions in advanced.

A repetitive procedure that will work their
way along a list, searching for a particular
element or performing some operation on
every element encountered.
n Repetition is expressed in Prolog by using

recursion .

124Chapter 16: Logic Programming

Lists: recursion

In order to solve a problem, perform some
action and then solve a similar problem of
the same type using the same procedure.
The process terminates when the problem
becomes so small that the procedure can
solve it in one step without calling itself
again.
Some common operations on lists:
membership, concatenation, adding an
item to a list, etc

125Chapter 16: Logic Programming

Lists: membership

A predicate member(X,L) succeeds if X
is an element of the list L.
Examples:
?- member(b,[a,b,c]).

yes
?- member(b,[a,[b,c]]).

no
?- member([b,c],[a,[b,c]]).

yes

126Chapter 16: Logic Programming

Lists: membership

What can we say about the membership
relation?
In general, this relationship can be based on
the following observation:

X is a member of L if either
(1) X is the head of L , or
(2) X is a member of the tail of L.

22

127Chapter 16: Logic Programming

Lists: membership

Identify two special case that are not
repetitive
n If L is empty, fail with no further action (nothing is

a member of the empty list).
n If X is the first element of L, succeed with no

further action (the element was found).
To solve the first special case: make sure in
all clauses that the second argument is
something that will not unify with an empty
list.

128Chapter 16: Logic Programming

Lists: membership

The second argument should be a list that has both a
head and a tail.

n The second special case (a simple clause):

member(X,[X|Tail]).

The recursive part (“X is a member of L if X is a
member of the tail of L”) can be expressed as:
member(X,[Head|Tail]):-

member(X,Tail).

129Chapter 16: Logic Programming

Lists: concatenation

The predicate concatenate or append
combines to lists into a single list.
Examples:

?- concatenate([a,b,c],[d,e,f],X).
X = [a,b,c,d,e,f].

Can we use ‘|’? [[a,b,c]|[d,e,f]]

is equivalent to [[a,b,c],d,e,f].

Strategy: work through the first list element by
element, adding elements one by one to the
second list.

130Chapter 16: Logic Programming

Lists: concatenation

The definition concatenation(L1,L2,L3)
will have again two cases, depending on
the first argument, L1:

(1) Since the first list will be shortened, it will
eventually become empty. So, if the first
argument is an empty list then the second
and the third arguments must be the same
list.

concatenate([],L,L).

131

Lists: concatenation
(2) If the first argument is a non-empty list then it
has a head and a tail. The new list have the
same head and the concatenation of the tail with
the second list.

concatenate([X|L1],L2,[X|L3]):-
concatenate(L1,L2,L3).

X

X L1 L2

L3

[X|L1]

L3

[X|L3] 132Chapter 16: Logic Programming

Lists: concatenation

Examples:
?- concatenate([a,[b,c],d],[a,[],b],X).

X = [a,[b,c],d,a,[],b]
?- concatenate([a,b,c],X,[a,b,c,d,e,f]).

X = [d,e,f]
?- concatenate(X,[d,e,f],[a,b,c,d,e,f]).

X = [a,b,c]
?- concatenate(X,Y,[a,b,c,d]).

X = [] Y = [a,b,c,d]
X = [a] Y = [b,c,d] X = [a,b] Y = [c,d]
X = [a,b,c] Y = [d] X = [a,b,c,d] Y = []

23

133Chapter 16: Logic Programming

Lists: adding an item

To add an item to a list, it is easier to put
the new item in front of the list so that it
becomes the new head.

add(X,L,[X|L]).
Examples:
?- add(0,[1,2,3],L).

L = [0,1,2,3]
?- add(X,[b,c,d],[a,b,c,d]).

L = a
134Chapter 16: Logic Programming

Lists: deleting an item

The delete operation delete(X,L,L1)
deletes an item X from a list L, where L1 is
equal to the list L with the item X removed.
(1) If X is the head of the list then the result after

the deletion is the tail of the list.
delete(X,[X|Tail],Tail).

(2) If X is in the tail then it is deleted from there.

delete(X,[Y|Tail],[Y|Tail1]):-
delete(X,Tail,Tail1).

135Chapter 16: Logic Programming

Lists: deleting an item

Delete, like member, is also non-deterministic in
nature.
n If there are several occurrences of X in the list then

delete will be able to delete anyone of them by
backtracking.

n Each alternative execution will only delete one
occurrence of X, leaving the others untouched.

?- delete(a,[a,b,a,a],L).
L = [b,a,a];
L = [a,b,a];
L = [a,b,a];
no

136Chapter 16: Logic Programming

Lists: counting list elements

This is the recursive algorithm to count
elements of a list:
n If the list is empty, it has 0 elements.

list_length([],0).
n Otherwise, skip over the first element, count

the number of elements remaining and add 1.
list_length([_|Tail],K) :-

list_length(Tail,J).
K is J+1.

137Chapter 16: Logic Programming

Lists: reversing a list

Recursive algorithm for reversing the order
of elements in a list:
(1) Split the original list into a head and tail.

(2) Recursively reverse the tail of the original
list.

(3) Make a list whose only element is the head
of the original list.

(4) Concatenate the reversed tail of the original
list with the list created in step 3.

138Chapter 16: Logic Programming

Lists: reversing a list
The list gets shorter every time, the
limiting case is an empty list, which Prolog
must return unchanged.
reverse([],[]).
reverse([Head|Tail],Result) :-

reverse(Tail,ReverseTail),
concatenate(ReverseTail,[Head],Result).

Example:
?- reverse([a,b,c,d],X).

X = [d,c,b,a]

24

139Chapter 16: Logic Programming

Family Facts

parent(pam,tom).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

female(pam).
male(tom).
male(bob).
female(liz).
female(ann).
female(pat).
male(jim).

140Chapter 16: Logic Programming

Controlling backtracking:
example

Consider the double step function. The
relation between X and Y can be specified
by three rules:
n Rule 1: if X < 3 then Y = 0

n Rule 2: If 3 ≤ X and X < 6 then Y = 2

n Rule 3: if 6 ≤ X then Y = 4

141Chapter 16: Logic Programming

Controlling backtracking:
experiment 1

f(X,0) :- X < 3.
f(X,2) :- 3 =< X, X < 6.
f(X,4) :- 6 =< X.

Question: ?- f(1,Y), 2 < Y.
The first goal f(1,Y), Y becomes instantiated to 0.
The second goal becomes 2 < 0 which fails, and so
does the whole goal list.
Before admitting that the goal list is not satisfiable,
Prolog tries, through backtracking, two useless
alternatives.
The three rules about the f relation are mutually
exclusive so that one of them at most will succeed.

142Chapter 16: Logic Programming

Controlling backtracking:
experiment 2

f(X,0) :- X < 3, !.
f(X,2) :- X < 6, !.
f(X,4).

Equivalent to these three rules:

if X <3 then Y =0,
otherwise if X < 6 then Y = 2,
otherwise Y = 4

143Chapter 16: Logic Programming

Examples using cut

Computing maximum
max(X,Y,X) :- X >= Y, !.
max(X,Y,Y).

Single-solution membership
member(X,[X|L]) :- !.
member(X,[Y|L) :- member(X,L).

Classification into categories
class(X, fighter) :- beat(X,_),beat(_,X),!.
class(X,winner) :- beat(X,_), !.
class(X, sportsman) :- beat(_,X).

144Chapter 16: Logic Programming

Input and Output

The build-in predicate read is used for
reading terms from the current input.
The goal read(X) will cause the next term,
T, to be read, and this term will be matched
with X.
n If X is a variable then X will be instantiated to
T.

n If matching does not succeed the the goal
fails.

25

145Chapter 16: Logic Programming

Input and Output

n This predicate is deterministic, so in the case
of failure there will be no backtracking to input
another term.

The build-in predicate write is used for
writing terms to the current output.
n This predicate ‘knows’ to display any term no

matter how complicated it may be.

146Chapter 16: Logic Programming

Constructing and Decomposing
Atoms

An atom can be converted to a sequence
of characters using the build-in predicate
name.
n This predicate relates atoms and their ASCII

codes.
n name(zx232,[122,120,50,51,50]).

Two typical uses:
1. Given an atom, break it down into single

characters.
2. Given a list of characters, combine them into

an atom

147Chapter 16: Logic Programming

Testing the Type of Terms

Sometimes it is useful to know what is the
type of some value.
Example: if we want to add the values of
two variables X and Y by: Z is X + Y.
n Before this goal is executed, X and Y have to

be instantiated to integers.
The build-in predicate integer(X) is true if
X is an integer or if it is a variable whose
value is an integer.
n X must ‘currently stand for’ an integer.

148Chapter 16: Logic Programming

Testing the Type of Terms

var(X) succeeds if X is currently an
uninstantiated variable.
nonvar(X) succeeds if X is a term other
than a variable, or X is an already
instantiated variable.
atom(X) is true if X currently stands for an
atom.
atomic(X) is true if X currently stands for
an integer or an atom.

149Chapter 16: Logic Programming

Testing the Type of Terms

compound(X) succeeds if X is a compound
term (a structure, including lists but not []).
number(X) succeeds if X is a number
(integer of floating-point).
float(X) succeeds if X is a floating-point
number.

150Chapter 16: Logic Programming

Constructing and Decomposing
Terms

There are three build-in predicates for
decomposing terms and constructing new
terms.
n Term=..L is true if L is a list that contains the

principal functor of Term, followed by its
arguments.

n functor(Term,F,N) is true if F is the principal
functor of Term and N is the arity of F.

n arg(N,Term,A) is true if A is the Nth argument
in Term , assuming that arguments are
numbered from left to right starting with 1.

26

151Chapter 16: Logic Programming

Finding all Solutions to a Query

Prolog can generate, by backtracking, all
the objects, one by one, that satisfy some
goal.
n Each time a new solution is generated, the

previous one disappears and is not accessible
any more.

n Sometime we would prefer to have all
generated objects available together.

152Chapter 16: Logic Programming

Finding all Solutions to a Query

findall(T,G,L) find each solution to G;
instantiates variables to T to the values
that they have in that solution; and adds
that instantiation of T to L.
bagof(T,G,L) like findall except for its
treatment of the free variables of G (those
that do not occur in T).

153Chapter 16: Logic Programming

Finding all Solutions to a Query

n Whereas findall would try all possible
values of all variables, bagof will pick the first
set for the free variables that succeeds, and
use only that set of values when finding the
solution in L.

n If you ask for an alternative solution to bagof,
you will get the results of trying another set of
values for the free variables.

setof(T,G,L) like bagof but the elements
of L are sorted into alphabetical order and
duplicates are removed.

