Chapter 1

Preliminaries

Topics

@Motivation

@Programming Domains
@Language Evaluation Criteria
@Language Design Trade-Offs
#Influences on Language Design
@Language Categories
@Implementation Methods

Chapter 1: Preliminaries 2

Languages

@The purpose of language is communication
= Natural languages
= Programming languages

@Writing an English essay:

= Many can write in English
= Few write well

Chapter 1: Preliminaries 3

What is a Programming Language?

@What is a language?

= A set of rules that enables communication
of ideas between people (between people
and machines).

<What is a program?

= A set of instructions intended for machine
execution.

@What is a programming language?

= A set of rules that define a set of legal
programs.

Chapter 1: Preliminaries 4

| already know a Programming
Language

@Why do | need to learn the concepts of
programming languages?
= | already know the latest/greatest/coolest
programming language.
= | can solve any problem using the
programming language that | already know.

Chapter 1: Preliminaries 5

What is the best Programming

Language?
@ Java 2 Prolog
2C 2 ML
2 C++ @ Modula-2
@ Perl @ Fortran
@ Python @ Cobol
& Visual Basic @ Smalltalk
@ Lisp @ Haskell

& Pascal @ Algol

Chapter 1: Preliminaries 6




No clear winner

@ Obviously there is no “best” language for all
situations.
= Type of program
= Time available
= Cost
= Size and scope of program
« Programmer familiarity

Real computer programmers do not get religious about their
languages, they get pragmatic and understand the trade-offs in
their language choices.

Chapter 1: Preliminaries 7

Reasons to study concepts of PLs

1. Improves ability to express ideas
= Languages influence the way you think and
approach problems.
= As you study new language features it may
help you utilize or extend your own language
skills.

s, | o it |

= New features can be later simulated in other
language.

Chapter 1: Preliminaries 8

Reasons to study concepts of PLs

2. Improves background for choosing
appropriate languages
= Helps you understand the trade-offs in
languages.

= Provides alternatives choices that suits the
project’s scope.

IR p—p—

Chapter 1: Preliminaries 9

Reasons to study concepts of PLs

3. Increases ability to learn new languages
= There is significant similarity in the

constructs provided by languages so that
learning a language is often just a matter of
syntax.
* Loops (while, for, do)
« Selection (if, case)
« Data types (int, char, string, object)
« Jumps (goto, break, continue)

e

Chapter 1: Preliminaries 10

Reasons to study concepts of PLs

4. Allows a better understanding of the
significance of implementation
= Why the languages are design the way they
are.

=

design’'s purpose more intelligently

= Recursion vs. Iteration (faster)

Chapter 1: Preliminaries 11

Reasons to study concepts of PLs

5. Increases ability to design new
languages
6. Overall advancement of computing

= Is the most popular programming language
the best choice?

= Why a language is the most popular?

Chapter 1: Preliminaries 12




What impacts Programming
Language Design?

@Application domain
@Evaluation Criteria
@Computer architecture

@#Programming methodologies

Chapter 1: Preliminaries 13

What impacts Programming
Language Design?

@Application domain -

@Evaluation Criteria
2@Computer architecture

@#Programming methodologies

Chapter 1: Preliminaries 14

Programming Domains

@Scientific
» Focus on calculations
#Simple data structures

#Large numbers of floating-point arithmetic
computations

= Primary concern: efficiency
= Languages: Fortran, Algol 60

Chapter 1: Preliminaries 15

Programming Domains

@Business
= Focus on reports and calculations

#Facilitates the production of reports

@Have precise ways of describing and storing
decimal numbers and character data

#Specifies decimal arithmetic operations
= Language: Cobol

Chapter 1: Preliminaries 16

Programming Domains

@ Artificial Intelligence
= Use symbolic rather than numeric computations.
= Focus on string and list manipulation

» Languages: Lisp family (Common Lisp, Scheme, ML),

Prolog.
@ Systems Programming
= Focus on fast execution
@ Need efficiency because of continuous use
= Low-level features
= Languages: PL/S (IBM), Extended Algol, C

Chapter 1: Preliminaries 17

Programming Domains

@Scripting Languages

= Putting a list of commands (script) in a file to

be executed.
@Little code

= Generally domain specific

= Usually interpreted

= Languages: sh and ksh (for shell), awk
(report-generation), tcland tk (X Windows),
Perl (CGI programming), JavaScript, PHP

Chapter 1: Preliminaries 18




What impacts Programming
Language Design?

@Application domain
@Evaluation Criteria -
@Computer architecture

@#Programming methodologies

Chapter 1: Preliminaries 19

Project Manager’s Dilemma

@ Which language shall we use in the next
project?
= To come to a decision one needs arguments in favor
or against a language.
@ There are 4 main criteria:
= Readability
= Writability
= Reliability
= Cost

Are there other factors?

Chapter 1: Preliminaries 20

Language Evaluation Criteria

@Readability

= The ease with which programs can be read
and understood.

@Writability

= The ease with which a language can be
used to create programs.

@Reliability

= Reliable performance (according to
specifications) under all conditions.

Chapter 1: Preliminaries 21

Language Evaluation Criteria

Griterter

Characteristies Readabiit HONNTHY Hrab it
4 4 Y

e B
PHEHY ) 24

Cantrol structure

s

" .
I &)

5 b
PP

nreggiyvity

ol m

Chapter 1: Preliminaries 22

Evaluation Criteria: Readability

@Readability describes the ease of which
programs can be read and understood.

@This is the most important criterion.

@It significantly affects the maintainability of
code (mayor cost for programs).

@It must be considered in the context of
problem domain.

Chapter 1: Preliminaries 23

Evaluation Criteria: Readability

Factors

@ Overall simplicity
= Too many features is bad

= Multiplicity of features is ba

++count

= Operator overloading m|

Too simple can be just as much trouble (machine languages
just 0 and 1)

Chapter 1: Preliminaries 24




Evaluation Criteria: Readability

Factors
@0rthogonality

= A small number of primitive constructs
combined in a relative small number of
ways and everything can be combined with
anything else.
@Every possible combination is legal.
= Meaning is context independent
@Pointer is able to point to any type of variable.
= Makes the language easy to learn and read.
= Lack of orthogonality leads to exceptions to
rules.

Chapter 1: Preliminaries 25

Evaluation Criteria: Readability
Factors
2 Control statements
= Program easier to read from top to
bottom.
@Unstructured: GOTO
#Structured: loop

}

@Data type and structures

= Not enough structures leads to work-
arounds which can reduce clarity.
#Boolean type (vs. 0 and 1)
@Record (vs. Arrays)

Chapter 1: Preliminaries 26

Evaluation Criteria: Readability
Factors
@Syntax considerations
= Identifier length and form
#Too short equals bad variable names.
= Special words

#Block structure
= end vs. end-if and end-loop
#Special words

= Form and meaning
@Semantics should follows directly from syntax.

Chapter 1: Preliminaries 27

Evaluation Criteria: Writability

<Writability describes the ease with which a
language can be used to create programs
for a given domain.
= Be careful not to compare things which

should not be.

@Most of the features that affect readability
affects also writability.

Chapter 1: Preliminaries 28

Evaluation Criteria: Writability
Factors
@Simplicity and Orthogonality
= Lack of familiarity with some features leads
to misuse and disuse of those features.
#Misuse could cause bizarre results.
= Too much orthogonality may produce
undetected errors.
#Any combination of primitive is legal.

Chapter 1: Preliminaries 29

Evaluation Criteria: Writability

Factors

@Support for abstraction

= Ability to define and use complicated
structures or operations ignoring all the
details.
@Important for modular programming.
#Two forms of abstraction

« Process: subprograms

@ e.g. using a subprogram to implement a search or
sort algorithm.

= Data: data types
@e.g. trees, arrays, etc.

Chapter 1: Preliminaries 30




Evaluation Criteria: Writability

Factors
@Expressivity

= Aids writability by make it convenient and
easy to specify things.
= €.g. count++ vs. count = count + 1

Chapter 1: Preliminaries 31

Evaluation Criteria: Reliability
Factors

@Reliable programs work (according to

specifications) under all conditions.
2Type checking

= Earlier error detection is less expensive to

repair

= Compile-time checking is preferred.

@Exception handling

= The ability of a program to intercept run-time
errors, take corrective measures, and then
continue (e.g. C++, Java, Ada).

Chapter 1: Preliminaries 32

Evaluation Criteria: Reliability
Factors
@Aliasing

= Having to or more distinct referencing
methods, or names, for the same memory
cell.

@e.g. using pointer in C++, reference in Java
@Readability and Writability
= The easiest a program is to write, the more
likely it is to be correct.

= Programs that are difficult to read are difficult
to both to write and modify.

Chapter 1: Preliminaries 33

Evaluation Criteria: Cost

@ Cost of learning/teaching a language
(programmer training)

@ Cost of writing/developing a program (software
creation)

@ Cost of compiling the program (fast)

@ Cost of running the program (fast)

@ Cost of the compiler (for free e.g. Java)

@ Cost of poor reliability

& Cost of maintaining the program (corrections
and modifications to add new capabilities)

Chapter 1: Preliminaries 34

Evaluation Criteria; Other

@Portability

= The ease with which programs can be moved
from one implementation to another.

@Generality

= The applicability to a wide range of
applications.

@Well-definedness

= The completeness and precision of a
language’s official defining document.

Chapter 1: Preliminaries 35

Language Design Trade-Offs

“There are so many important but conflicting
criteria, that their reconciliation and

satisfaction is a major engineering task.”
( Tony Hoare 1973)

HeTabimity \I — (ost (execution)

4

Hxpressivity \s. HReadability
ritability s. Headability
Relabimity S. Writability (flexibility)

Chapter 1: Preliminaries 36




Language Design Trade-Offs

@ Most criteria cannot be defined nor measured
precisely.

@ The way a language is evaluated is heavily
influenced by the point of view and background
of the evaluator.

= Language designer
= Language implementor
= Language user

A real designer understands trade-offs and make
decisions rather than skirt them.

Chapter 1: Preliminaries 37

What impacts Programming
Language Design?

@Application domain
@Evaluation Criteria

2@Computer architecture -

@#Programming methodologies

Chapter 1: Preliminaries 38

Computer Architecture Influence

@ Imperative languages have been designed around
the von Neumann architecture
= Data and programs are stored in memory
= Central processing unit (CPU) executed the instructions
@ CPU and memory are separated
@ Instructions/data must be transmitted from memory to CPU
@ Results from operations are transmitted back to memory
@ Imperative languages map well to this architecture
= Variables are memory locations

= Assignments move data back and forth between CPU
and memory

» Iteration for repetition

Chapter 1: Preliminaries 39

The von Neumann Architecture

Mmony [Sones Dot nsucions and oaa)

Instrpciions sl data

l e T el il cudpul disacis

Coriral prosmsnyg wnit
Chapter 1: Preliminaries 40

What impacts Programming
Language Design?

@Application domain
@Evaluation Criteria
@Computer architecture

@#Programming methodologies

Chapter 1: Preliminaries a1

Programming Methodologies
Influence

@People’s needs affect the design of

programming languages and paradigms.
= 1950’s and early 1960’s

2Worry about machine efficiency

@Simple applications
= Late 1960’s

#Worry about people efficiency

@Better control structures and improved readability

» Structured programming
» Top-down design and step- wise refinement

Chapter 1: Preliminaries 42




Programming Methodologies
Influence

= Mid-late 1970’s
#Worry about reuse and maintenance
#Shift from process-oriented to data-oriented
» Data abstraction
= 1980's
@Rising complexity and costs
#Introduction of object-oriented programming
= Data abstraction + inheritance + polymorphism
= 1990's

#The Internet
« Data + network issues + interoperability

Chapter 1: Preliminaries 43

Programming Paradigms

@ Paradigms are programming styles (a special
way to express an idea or algorithm) that
embody programming design technology

Irhgerative EEclarative
Frocedural o dara\lel Uogical unctional atabase
Fortran ot ccam  Hrolog jaskell QL
Hiffel AML
a a "
ﬂcheme

Wfith blocks _ @bjects

Algal malltalk

Fascal

Chapter 1: Preliminaries 44

Programming Paradigms:
Imperative
@Central features are variables, assignment
statements, and iterative form of repetition.

@Specific order of execution of the
instruction

= Program = order series of steps
@Separation of data and algorithm
@C, Pascal, Cobol, Fortran

Chapter 1: Preliminaries 45

Programming Paradigms: Object-
Oriented

<Closely related to imperative

@Program = a set of definitions (data and
code that operates on the data
encapsulated together)

= Objects interact with each other by passing
messages back and forth

@Other features: inheritance, dynamic
binding

@Java, C++, Python, Smalltalk, Eiffel IEmSEN

Chapter 1: Preliminaries 46

Programming Paradigms:
Functional

@Central features are functions (applied to
given parameters)

= Program = a set of mathematical functions
each with an input (domain) and an output
(range)
= No assignments, tons of recursion, and less
focus on order
@Lazy evaluation: postpone operand
evaluation until operation.

@Lisp, Scheme, Haskell, ML  Example |

Chapter 1: Preliminaries 47

Programming Paradigms: Logic

@ What vs. How
@ Rule-based language
@ Rules are specified in no particular order
@ Program = collection of logical declarations that
describe the problem to be solved
= An inference engine then finds the solution
@ |t is also called declarative
= Declare or make assertions
» No sequence
@ Prolog

Chapter 1: Preliminaries a8




Programming Example

Greatest Common Denominator (gcd)

Chapter 1: Preliminaries 49

Programming Paradigms:

Advantage [pisadvantage
Ithperative Running cost Reliability
Qompilation cost il
Functional VYritability (asbtract)  Running cost
p ilation cost
Reliability
Vrification
dbject-oriented Maintenance cost Uearning cost
Reliability Gompilation cost
Apstraction Running cost

Chapter 1: Preliminaries

50

Language Implementation

@ There are three possible approaches to
translating human readable code to
machine code

1 Compilation
> Interpretation
s Hybrid

Chapter 1: Preliminaries 51

Compilation

@ Translate high-level '
program to machine =
code

@ Slow translation

@ Fast execution

@ Optimization (improve

program by making it i =

smaller or faster)
@ Slow for development

@ Difficult dealing with
runtime errors

Chapter 1: Preliminaries

52

Interpretation

..
I' SOnce b
No translation . pogam J
Easier implementation :
Slower execution

Often requires more ——

- . ~ I z
space . o Input data
@ Easy run-time error 1

handling |
@ Becoming rare on \
high-level languages i i
@ Significant comeback iy
with some Web I

= I - ]

scripting languages
(e.g. JavaScript)

Chapter 1: Preliminaries 53

Hybrid

@ A compromise between i
compilers and pure
interpreters

@ Faster than pure
interpretation (medium
execution speed)

@ A high-level language
program is translated to
an intermediate language g
that allows easy
interpretation (small
translation cost)

Chapter 1: Preliminaries

54




Language Implementation:

Comparison
Compiler Interpreter Hybrid
Speed (runtime) ++ - -
simple complex

Memory needed

++ -
source, symbol

table
Portability - - ++
reusable backend intermediate
language
Reliability - ++ ++
no checks additional checks |additional checks

Chapter 1: Preliminaries

Summary

@ Reasons to study concepts of PLs
= Increase our capacity to use different constructs
= Enables us to choose languages more intelligently
= Makes learning new languages easier
2 Most important criteria for evaluating PLs
= Readability, writability, reliability, and cost
@ Major influences on language design
= Machine architecture and software development
methodologies
@ Major methods of implementing languages

« Compilation, pure interpretation, and hybrid
implementation

Chapter 1: Preliminaries 56

10



