
Simon Fraser University
School of Computing Science

CMPT 383

Assignment 4 (Functional Programming)

Due date: December 1, 2005

1. (6 marks) Imagine a language of expressions for representing integers defined by the syntax
rules: (a) zero is an expression, (b) if e is an expression, then so are succ(e) and pred(e).
 An evaluator reduces expressions in this language by applying the following rules repeatedly
until no longer possible:
 succ(pred(e)) = e
 pred(succ(e)) = e
Given the expression succ(pred(succ(pred(pred(zero))))), write a reduction
sequence. In how many ways can the reductions be applied to this expression? Do they all lead
to the same final result?

 Outermost Reduction Sequence Innermost Reduction Sequence

 succ(pred(succ(pred(pred(zero)))) succ(pred(succ(pred(pred(zero))))
 { by succ(predd(e)) = e } { by succ(predd(e)) = e }
 succ(pred(pred(zero))) succ(pred(pred(zero)))
 { by succ(pred(e)) = e } { by succ(pred(e)) = e }
 pred(zero) pred(zero)

 Other Reduction Sequence

succ(pred(succ(pred(pred(zero))))
{ by pred(succ(e)) = e }
succ(pred(pred(zero)))
{ by suc(pred(e)) = e }
pred(zero)

There are 3 different reduction sequences for this expression. All of them lead to
the same final canonical form (result).

2. (6 marks) Suppose a date is represented by a triple (d,m,y) of three integers, where d is the day,
m is the month, and y is the year. Define a function age that takes two dates, the first being the
current date, and the second being the birthdate of some person P, and return the age of P as a
whole number of years.

age :: (Integer,Integer,Integer) -> (Integer,Integer,Integer) -> Integer
age (d1,m1,y1) (d2,m2,y2)
 | years >= 0 && m2 < m1 = years
 | years >= 0 && m2 == m1 && d2 <= d1 = years
 | years > 0 && m2 == m1 && d2 > d1 = years - 1
 | years > 0 && m2 > m1 = years - 1
 | otherwise = error "Incorrect dates"

 where years = y1 - y2

3. (6 marks) Define a function convert::NatàInteger that converts a natural number to an
integer.

data Nat = Zero | Succ Nat

convert :: Nat -> Integer
convert Zero = 0
convert (Succ n) = 1 + convert n

4. (6 marks) Define the function that splits a list of numbers into two lists: positive ones
(including zero) and negative ones. For example

? split [3,-1,0,5,-2]
([3,0,5],[-1,-2])

split :: [Integer] -> ([Integer], [Integer])
split [] = ([], [])
split (x:xs)
 | x >=0 = (x:fst(split xs),snd(split xs))
 | x < 0 = (fst(split xs),x:snd(split xs))

5. (5 marks) The function filter takes a Boolean function p and a list xs and return that sublist of
xs whose elements satisfy p. For example,

? filter even [1,2,4,5,32]
[2,4,32]

 This function filter can be defined in terms of concat and map:
filter p xs = concat ⋅ map box
 where box = …

 Give the definition of box.

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = concat (map box xs)
 where box x = if p x then [x] else []

6. (5 marks) The functions takeWhile and dropWhile are similar to take and drop except that
they both take a boolean function as first argument instead of a natural number. The value
takeWhile p xs is the longest initial segment of xs all of whose elements satisfy p. For
example:

? takeWhile even [2,4,6,1,5,6]
[2,4,6]

 The value dropWhile p xs gives what remains; for example:
 ? dropWhile even [2,4,6,1,5,6]

[1,5,6]
 Give recursive definitions of takeWhile and dropWhile.

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs) = if p x then x:takeWhile p xs else []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p (x:xs) = if p x then dropWhile p xs else x:xs

7. (5 marks) Define the function palindrome that verifies if a string is palindrome. A string is a

palindrome if it reads the same in the forward and in the backward direction. For example:
? palindrome “madam”
True

palindrome :: String -> Bool

palindrome x = if x == reverse x then True else False

8. (10 marks) Write a program to convert a whole number of pence into words. For example, the

number 3649 should convert to “thirty-six pounds and forty-nine pence”.
? convert 3649
Thirty-six pounds and forty-nine pence

units, teens, tens :: [String]
units = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
teens = ["ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen",
"seventeen", "eighteen", "nineteen"]
tens = ["twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]

digits2 :: Int -> (Int,Int)
digits2 n = (div n 10, mod n 10)

combine2 :: (Int,Int) -> String
combine2 (0,0) = "zero"
combine2 (0,u+1) = units!!u
combine2 (1,u) = teens!!u
combine2 (t+2,0) = tens!!t
combine2 (t+2,u+1) = (tens!!t) ++ "-" ++ (units!!u)

convert2 :: Int -> String
convert2 n = combine2 (digits2 n)

digits3 :: Int -> (Int,Int)
digits3 n = (div n 100, mod n 100)

combine3 :: (Int,Int) -> String
combine3 (0,0) = "zero"
combine3 (0,t+1) = convert2 (t+1)
combine3 (h+1,0) = units!!h ++ " hundred"
combine3 (h+1,t+1) = units!!h ++ " hundred and " ++ convert2 (t+1)

convert3 :: Int -> String
convert3 n = combine3 (digits3 n)

link :: Int -> String
link n = if n < 100 then " and " else " "

digits6 :: Int -> (Int,Int)
digits6 n = (div n 1000, mod n 1000)

combine6 :: (Int,Int) -> String
combine6 (0,0) = "zero"
combine6 (0,h+1) = convert3 (h+1)
combine6 (m+1,0) = convert3 (m+1) ++ " thousand"
combine6 (m+1,h+1) = convert3 (m+1) ++ " thousand" ++ link (h+1) ++ convert3 (h+1)

convert6 :: Int -> String
convert6 n = combine6 (digits6 n)

convert :: Int -> String
convert n = convert6 pounds ++ " pounds " ++ convert6 pence ++ " pence"
 where pounds = div n 100
 pence = mod n 100

9. (6 marks) An integer x can be represented by a pair of integers (y,z) with x=10*y+z. For
example, 27 can be represented by (2,7), (3,-3), and (1,17), among others. Among
possible representations we can choose one in which abs z<5 and abs y is as small as possible
(subject to abs z≤5). Define a function reprint, so that reprint x returns this canonical
representation.

? reprint 27
(3,-3)

reprint :: Integer -> (Integer, Integer)
reprint x
 | abs (a) > 5 = (b+1, a-10)
 | abs (a) <= 5 = (b,a)
 where a = mod x 10
 b = div x 10

10. (15 marks) Suppose that there are tab stops at every 8 spaces. Write a function that will take a
string as an argument and return as a result a string that is equivalent to the input string, except
that whenever two or more spaces can be replaced by a tab, this is done. You may assume that
the input string contains no tabs, newlines, or other whitespace characters other than spaces.
For example, “1234? ? ? ? ?01 ? ?4? ?7890123? ?6” should be transformed into
“1234\t?01? ?4\t7890123? ?6” where “\t” denotes a tab and “? ” represents a space. (If we show
the position of tab stops by “∧”, then the input is “1234? ? ? ? ∧?01? ?4? ? ∧7890123? ∧?6”.)
The first tab replaces 4 spaces while the other tab replaces 2 spaces. A third tab could replace
the single space in the 24th position of the input, except that we only use a tab to replace 2 or
more spaces. The 2 spaces between 1 and the 4 cannot be replaced with a tab, because the 4 is
not positioned after a tab stop. The other 2 spaces, near the end of the input, remain because
only 1 can be replaced by a tab.

makeGroups8 :: String -> [String]
makeGroups8 [] = []
makeGroups8 s = take 8 s:makeGroups8 (drop 8 s)

returnSpaces :: String -> String
returnSpaces [] = []
returnSpaces (x:xs) = if x == ' ' then x:returnSpaces xs
 else []

dropSpaces :: [String] -> [String]
dropSpaces [] = []
dropSpaces (x:xs) = if (spaces >= 2) then

("\t" ++ drop spaces x):dropSpaces xs
 else x:dropSpaces xs
 where spaces = length (returnSpaces x)

flatten :: [String] -> String
flatten [] = ""
flatten (x:xs) = x ++ flatten xs

replace :: String -> String
replace [] = []
replace x = flatten(map reverse (dropSpaces (map reverse (makeGroups8 x))))

