Simon Fraser University School of Computing Science

CMPT 383

Assignment 4 (Functional Programming)

Due date: December 1, 2005

1. Imagine a language of expressions for representing integers defined by the syntax rules: (a) zero is an expression, (b) if e is an expression, then so are succ(e) and pred(e).

An evaluator reduces expressions in this language by applying the following rules repeatedly until no longer possible:

```
succ(pred(e)) = e
pred(succ(e)) = e
```

Given the expression <code>succ(pred(succ(pred(pred(zero)))))</code>, write a <code>reduction sequence</code>. In how many ways can the reductions be applied to this expression? Do they all lead to the same final result?

- 2. Suppose a date is represented by a triple (d,m,y) of three integers, where d is the day, m is the month, and y is the year. Define a function age that takes two dates, the first being the current date, and the second being the birthdate of some person P, and return the age of P as a whole number of years.
- 3. Define a function convert::Nat→Integer that converts a natural number to an integer.
- 4. Define the function that splits a list of numbers into two lists: positive ones (including zero) and negative ones. For example

```
? split [3,-1,0,5,-2]
([3,0,5],[-1,-2])
```

5. The function filter takes a Boolean function p and a list xs and return that sublist of xs whose elements satisfy p. For example,

```
? filter even [1,2,4,5,32] [2,4,32]
```

This function filter can be defined in terms of concat and map:

```
filter p xs = concat · map box
     where box = ...
```

Give the definition of box.

6. The functions takewhile and dropWhile are similar to take and drop except that they both take a boolean function as first argument instead of a natural number. The value takeWhile p xs is the longest initial segment of xs all of whose elements satisfy p. For example:

```
? takeWhile even [2,4,6,1,5,6]
[2,4,6]
The value dropWhile p xs gives what remains; for example:
    ? dropWhile even [2,4,6,1,5,6]
```

Give recursive definitions of takewhile and dropwhile.

7. Define the function palindrome that verifies if a string is palindrome. A string is a palindrome if it reads the same in the forward and in the backward direction. For example:

```
? palindrome "madam"
True
```

8. Write a program to convert a whole number of pence into words. For example, the number 3649 should convert to "thirty-six pounds and forty-nine pence".

```
? convert 3649
Thirty-six pounds and forty-nine pence
```

9. An integer x can be represented by a pair of integers (y,z) with x=10*y+z. For example, 27 can be represented by (2,7), (3,-3), and (1,17), among others. Among possible representations we can choose one in which abs z<5 and abs y is as small as possible (subject to abs z≤5). Define a function reprint, so that reprint x returns this canonical representation.

```
? reprint 27 (3,-3)
```

10. Suppose that there are tab stops at every 8 spaces. Write a function that will take a string as an argument and return as a result a string that is equivalent to the input string, except that whenever two or more spaces can be replaced by a tab, this is done. You may assume that the input string contains no tabs, newlines, or other whitespace characters other than spaces.

For example, " $1234_{?????}01_{??}4_{??}7890123_{??}6$ " should be transformed into " $1234\t_?01_{??}4\t_7890123_{??}6$ " where "\t" denotes a tab and "?" represents a space. (If we show the position of tab stops by ",", then the input is " $1234_{????\wedge?}01_{??}4_{??\wedge}7890123_{?\wedge?}6$ ".)

The first tab replaces 4 spaces while the other tab replaces 2 spaces. A third tab could replace the single space in the 24th position of the input, except that we only use a tab to replace 2 or more spaces. The 2 spaces between 1 and the 4 cannot be replaced with a tab, because the 4 is not positioned after a tab stop. The other 2 spaces, near the end of the input, remain because only 1 can be replaced by a tab.