
Simon Fraser University
School of Computing Science

CMPT 383

Assignment 3 (Prolog)

Due date: November 22, 2005

1) Convert the following predicate calculus to Horn clause(s).
∀g ((logician(g) ∩ ∀a(argument(l,a)⊃ sound(a))) ⊃ happy(g))

2) Given the following Prolog program
no_doubles([],[]).
no_doubles([X|Xs],Ys) :- member(X,Xs), no doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) :- nonmember(X,Xs), no_doubles(Xs,Ys).

nonmember(X,[]).
nonmember(X,[Y|Ys]) :- X\==Y, nonmember(X,Ys).

member(X,[X|_]).
member(X,[Y|T]) :- X \== Y, member(X,T).

Describe the complete execution trace, using a graphic representation, of the
following goal:
?- no_doubles([a,b,a,c,b],X).

3) Write the predicate difference/3 that defines the set subtraction relation, where

all three sets are represented as lists. For example:
?- difference([a,b,c,d], [b,d,e,f], D).
D = [a,c]

4) Write the predicate merge/3 to merge two sorted lists producing a third list. For
example:
?- merge([2,5,6,6,8], [1,3,5,9], L).
L = [1,2,3,5,5,6,6,8,9]

5) Write the predicate split/3 to split a list of numbers into two lists: positive ones
(including zero) and negative ones. For example:
?- split([3,-1,0,5,-2], P, N).
P = [3,0,5]
Q = [-1,-2]

6) Define the predicate palindrome(List).A list is a palindrome if it reads the
same in the forward and in the backward direction. For example:
?- palindrome([m,a,d,a,m]).

yes

7) Define two predicates evenlength(List) and oddlength(List) so that they
are true if their argument is a list of even or odd length respectively. For example,
the list [a,b,c,d] is ‘evenlength’ and [a,b,c] is ‘oddlength’.

8) Assume that a rectangle is represented by the term rectangle(P1,P2,P3,P4)

where the P’s are the vertices of the rectangle positively ordered. Define the
predicate regular(R), which is true if R is a rectangle whose sides are vertical
and horizontal.

9) Write the predicate simplify/2 to symbolically simplify summation expressions

with numbers and symbols (lower-case letters). Let the predicate to rearrange the
expressions so that all the symbols precede numbers. For example:
?- simplify(1+1+a, E).
E = a+2
?- simplify(1+a+4+2+b+c, E).
E = a+b+c+7
?- simplify(3+x+x, E).
E = 2*x+3

10) Define the predicate between(N1,N2,X) which, for two given integers N1 and

N2, generates through backtracking all integers X that satisfy the constraints
N1≤X≤N2.

Programming Assignment: Kinship Relations
The relationships you must define are the following:
• child(X,Y) - true if X is a child of Y.
• daughter(X,Y) - true if X is a daughter of Y.
• parent(X,Y) - true if X is a parent of Y.
• mother(X,Y) - true if X is the mother of Y.
• sibling(X,Y) - true if X and Y are siblings (i.e. have the same biological parents).

Be sure your definition does not lead to one being one's own sibling.
• brother(X,Y) - true if X is a brother of Y.
• grandparent(X,Y) - true if X is a grandparent of Y.
• grandmother(X,Y) - true if X is a grandmother of Y.
• grandfather(X,Y) - true if X is a grandfather of Y.
• uncle(X,Y) - true if X is an uncle of Y. Be sure to include uncles by marriage (e.g.

your mother's husband's brother) as well as uncles by blood (e.g. your mother's
brother).

• sister-in-law(X,Y) - true if X is a sister- in- law of Y.
• mother-in-law(X,Y) - true if X is a of Y.
• spouse(X,Y) - true if X and Y are married.
• wife(X,Y) - true if X is the wife of Y.
• ancestor(X,Y) - true if X is a direct ancestor of Y (i.e. a parent or an ancestor of a

parent).
• descendant(X,Y) - true if X is a descendant of Y.
• relative-by-blood(X,Y) - true if X is a blood relative of Y (i.e. related through

some combination of offspring relations).
• relative(X,Y) - true if X and Y are related somehow (i.e. through some

combination of offspring and marriage relations).
• young_parent(X) – true if X has a child but does not have any grandchildren.

The goal is to devise a good representation -- one that is intuitive and natural and would
be easy to extend.

• Choose a set of primitive relationships to encode as facts that will allow you to
define the rest of the relations as rules. You might choose, for example, parent/2,
male/1, female/1, spouse/2 as the predicates to enter as facts and define the rest
using rules.

• You may need to (or want to) define other relations, e.g., a gender/2 relation.
• Test out your database design by entering the facts about your own immediate

family and trying out each of the relations.
• Hand in a listing of your database (facts and rules), and a sample run showing a

query for each predicate defines.

