Lecture Notes on Domain Theory *

Robert Muller
August 31, 1999

Abstract
What follows is a collection of lecture notes for a series of three lectures introducing Scott’s domain
theory. The lecture notes are not intended to serve as a primary reference but rather as a supplement
to a more comprehensive treatment such as [Sch86] or [Sto77].

1 Introduction

One of the basic principles of the Scott-Strachey approach to programming language theory is to define
the meaning of a computer program as a mathematical entity that is independent of any implementation
the language. It seems natural to model the data types of the language as sets and programs operating
on the data types as functions between sets.

A fundamental problem which arises in this regard is inherent in the difference between the specification
and definition of an object. For example, function specifications may not have an obvious function
associated with them. Consider the specification:

g(n) =if n = 0 then 1 else g(n + 1).
What is the mathematical function specified by g? Clearly,

gi(z) =1
gives the correct information on argument 0, but so does

() = 1 x=0
92\%) =\ 343 otherwise.

The problem is that g is undefined for any argument > 0 but one usually works with total functions
f : D1 — D, that are defined for every element of D;.

Similarly, data types are often specified recursively. As we have seen, in any suitable value space for
untyped A-calculus one even has the specification:

D=D D,

and it is not obvious that any non-trivial set satisfies this equation.

The solution to these problems was first proposed in 1969 by D. Scott. As we will see, the basic idea
of using sets and functions between sets holds up — provided that the sets have some internal structure
(these will be the complete partial orders) and the functions preserve that structure (these will be the
continuous functions).

In these notes we will develop the basic mathematics of domain theory. In Section 2 we define the basic
structure of the complete partial orders and the properties of structure preserving functions. The payoff
will be the Tarski-Scott Fixpoint theorem which ensures that the functions which arise in programming
languages have well-defined meanings. In Section 3 we briefly take up the question of recursively defined
domains showing that Pw (i.e., the powerset of natural numbers ordered by subset inclusion) serves as a
universal domain.

Our primary reference is [Sch86] Chs. 3 and 6 but [Sto77, Hen88] and [Bar84] will also be useful.

*This paper appeared as Harvard University CRCT Technical Report TR-06-92.

2 The Theory of Fixpoints
We assume known elementary properties of set theory.

Definition 1 (Partial Order) D = (U,Cp) is a partially ordered set (poset) if U is a set and Cp is a
binary relation on U such that

i) Cp is reflexive, i.e.,Vx € U, z Cp z.
ii) Cp is antisymmetric, i.e.,Vz,y e U,z Cpyand yCpz = x = y.
iii) Cp is transitive, i.e.,Vz,y, 2 € U,z Cpy,and y Cp 2 = x Cp 2.

We will usually refer to D = (U,Cp) simply as D and treat it as though it were a set (e.g., € D).

Whenever possible we will omit the subscript on the relation Cp.
The following examples of partially ordered sets will be referenced throughout the notes.

o0 o0
|
2 2 a 2
| |
1 1 1
L L 0
[1] [2] [3]
Nat

0,1} {0,2} {1,2} ...

01 2 ... 01N2/... {or {1+ {2} ...
1 {}
[4] [5] [6]

Definition 2 (Join) Let D be a poset and z, y € D. The join of z and y in D, notation z Uy, is the
element of D (if it exists) such that,

i) zCzUyandy Cx Uy,

i) VzeD,zCzandyCz=zUyLC 2.

In [1],0U2 = 2. In [4], 0U 2 does not exist.

Definition 3 (Least Upper Bound) Let D be a poset. For X C D, the least upper bound (lub) of X,
notation | |, X, is the element of D (if it exists) such that

i) Ve X,z C ||y X,
iil) Vye D,if Vz € X, z C y then | |, X Cy.

The element oo is the lub of the chain {0,1,2,...} in [2].

We will usually omit the subscript from | |,.

Our framework will require the existence of lubs of subsets of our value spaces. However, we will not
require that all subsets have lubs.

Definition 4 (Chain) Let D be a poset. C C D is a chain if Vo, y € C, either z Cy or y C z.

The elements in [1] form a chain but the chain does not have a least upper bound.

Definition 5 (Complete Partial Order) i) A poset D is a complete partial order (cpo) if for all
chains C C D, | |C € D.

ii) A cpo D is a pointed cpo if it has a least element x € D, such that Vy € D, z C y.

Thus, [1] is not a cpo but [2] through [6] are. [4] is not a pointed cpo but [2], [3], [5] and [6] are.

2.1 Structure Preserving Functions

We now wish to consider functions which preserve the structure of partially ordered sets.

Definition 6 (Monotonicity) Let D;, Dy be posets. A function f : Dy — Dy is monotonic if Vz,
Y € Dl,
zCp, y= f(SL') Cho, f(y)

For example, let

Bool, = tt\/ff
1
Then f; : Booly, — Bool,, given by
1 z=tt
filzy=¢ L z=1
ff x=Af
is monotonic, but fy : Bool, — Bool, , given by
1 z=tt
f2 (.’L‘) = tt =1
f xz=ff

is not since L C tt but fo(L) Z f2(tt).

Definition 7 (Continuity) Let D;, Dy be cpos. A function f : D; — D3 is continuous if for all chains
C c Dla

fLo) =1ir@ cecy
D Do

Proposition 1 Any continuous function is monotonic.

Proof: Let f : D; — D, be continuous and a1, az € D; such that a; C a3. Then {a1,a2} is a chain.
f(far,a2}) = flan)
| [{(a1), f(a2)}

That is, f(al) C f(a2). O

The converse of proposition 1 is not true. Let f : [2] — Bool,, be given by,

1@ ={ Y Ioee

otherwise.

Then f is monotonic but

FLH0 1,) =floo) =tt # L=| {1, L,..} = |f({0,1,...}),

so f is discontinuous. Discontinuous functions do not preserve limits of chains.
Now the payoff.

Definition 8 (Fixpoint) Let D be a poset and f be a function from D to D.
i) d € D is a fizpoint of f if f(d) =
ii) d is the least fixpoint if for all d' € D, f(d')=d = dCd'.

Theorem 1 (Tarski-Scott Fixpoint Theorem) Let D be a pointed cpo. Any continuous function
F : D — D has a least fizpoint given by

=| {Fi(1p) |i >0}
Proof:
F(fis(F)) = F(|[{Fi(Lp)|i>0})
|_|{F (Fi{(Lp))|4>0} by continuity

= | {Fi(ap) |i>1}
= |_|{Fz)|i>0}
= fix(F).

Thus, fiz(F), is a fixpoint of F. To see that fiz(F) is least, let d be such that F'(d) =d. Lp C d, and by
monotonicity of F, Fi(Lp) C Fi(d). Thus,

fialF) = | [{Fi(Lp)|i>1}Cd.

For example, let D = Nat — Nat, and define,
F:D — D= MAfn.if n =0 then 1 else n* f(n —1).

=| |Fi(lp) = {(0,1),(1,1),(2,2),...,(,i),...}

i>0
!

F*(1p) = {(0,1),(1,1),(2,1),...}
U

FI(J-D) = {(071)7(17J-)7(27J-)7"'}
[

FO(LD) = {(OaJ-)a(17J-)7(2aJ-)a"'}'

3 Data Types

We now wish to establish that domains are closed under a rich enough variety of operations that they
are suitable as value spaces for practical programming languages. The constructions we consider are
continuous function space construction (=), cartesian product (x), and disjoint union (+).

First, a technical definition for adjoining a bottom element to a poset.

Definition 9 Let D = (U,Cp) be a poset. The lifting of D, notation D, ,is D; = (UU{Lp},Cp,),
with J—D EDJ_ x, Vz eU.

Proposition 2 If D is a cpo then D, is a pointed cpo.

Definition 10 Let D; and D, be posets. Then the set of continuous functions from Dy to Do, is,
[D1 — Do) ={f| f € D1 — Da, f is continuous},

with the pointwise ordering, for f, g € [D1 = Ds], f Cip,p,) 9 iff Vo € Dy, f(x) Cp, g(x).

Proposition 3 Let Dy and D2 be cpos. Then [D1 — Ds] is a cpo.

Proof: Let {f; : D1 — D» | i € I} be a chain in [D; — D). For each a; € D1, let A; = {fi(a;) |7 € I}.
Each A; is a chain in D,, thus, | | A; exists. Define g : D; — D by g(a;) = || A;, for all a; € D;. We
first show that g is continuous. Let {a; | j € J} be a chain in D;.

| [{9(a;) 14 €T} | | {fitaj) lie}|ieT}

|_|{|_|{fi(aj) | j € J}|i€lI} by associativity of | |
= |_|{fi(|_|{aj |j€J})|ie€l} since f; is continuous
9(| Haj 17 €T

Thus, g is continuous. Moreover, g is the lub of {f; : Dy — D, | i € I} by the ordering. m|

Definition 11 Let D; and Dy be posets. Then the product of D, and D, is,
Dy x Dy ={(d,d") | d € D1,d € D},
with the componentwise ordering:
(di,ds) Cp,xp, (dy,dy) iff di Cp, d) and dy Cp, d.
Proposition 4 Let Dy and D, be (pointed) cpos. Then Dy x D3 is a (pointed) cpo.
Proof: Left as an exercise.
Definition 12 Let D; and Dy be posets. Then the disjoint union of Dy and D is,
Dy + Dy = {(i,d;) | d; € D;},

with ordering;:
(iadi) CDi+D. (.77 d;) iff 4 =j and d; Cp, d;

Proposition 5 Let Dy and D2 be cpos. Then Dy + D5 is a cpo.

Proof: Left as an exercise.

3.1 Recursively Defined Datatypes

The problems inherent in recursively specified data types are in stark relief in the untyped A-calculus.
Remember the difficulty highlighted in previous lectures of finding a non-trivial model: since functions can
be applied to themselves, any value space D must apparently include the set of functions from (D — D).
By a simple cardinality argument, such an inclusion cannot hold.

We will overcome this problem by insisting that the set D and the class of functions (D — D)
are sufficiently rich to provide meanings for all of our programs yet they are small enough that we can
construct an isomorphism between D and (D — D). The isomorphism will be constructed via an adjoined
pair of maps ® : D — (D — D) and ¥ : (D — D) —» D,

>
D (D - D)
7

Adjoined pairs of this type have the essential property that it is possible to completely recover any
function in (D — D) from its representation in D. That is,

®o¥ = id(p.p)
Tod L ldD

With this established we can then define the semantics of untyped A-calculus as follows. Let Var =
{zg,x1,...}. Define the set of terms Term by,

M=z | e M| M M.
We will require an environment p mapping variables to values in D.
p € Env=Var = D.

The semantics is then be given by
[[] : Term — Env — D

[z]lp = »p(z)
[\z.M]p = ¥(f) where f(d) = [M]p[z — d]
[M Nlp = f(INlp) where f =2([M]p)

S

3.2 Pw as a Reflexive Domain

What kind of set D and what class of functions (D — D) will admit such a construction? An algebraic
cpo and continuous functions [D — D).

Definition 13 (Compact Element) i) Let D be a ¢po. z € D, is compact if for all chains C' C D,
z C | |C = Jc € C, such that z C c.

ii) Let Compact(D) denote the set of compact elements of cpo D.

Elements oo in [2] and a and oo in [3] are not compact. The cpo in [6], called Pw, is even a complete
lattice. Its compact elements are the finite sets.

Obviously we will not require that all elements be compact, but we do insist that each element be the
lub of a chain of compact elements.

Definition 14 (Algebraic cpo) i) Let D be a cpo. D is an algebraic cpo if Vo € D, z = | |C, for
some chain C' C Compact(D).

ii) An algebraic cpo is w-algebraic if Compact(D) is countable.

[3] is not an algebraic cpo since element a is not the lub of a chain of compact elements. [2], [4], [5]
and [6] are all w-algebraic cpos.

Algebraic cpos have a number of important properties. Among them is the following:

Proposition 6 Let D1 and D» be algebraic cpos. A function f: Dy — Dy is continuous iff Vo € Dy,
f(z) =| |{(d) | d € Compact(D1),d C x}.

Proof: = Let f be continuous. Then

f(z)

f(|_|{d Cz | d € Compact(D;)}
= |_|{f(d) | d € Compact(D,),d C z}.
< (See [Bar84], p. 17). O

Thus, continuous functions over algebraic cpos are determined by their values on compact elements.
We now turn our attention to the particular algebraic cpo Pw. Recall that the compact elements of
Puw are the finite sets. By proposition 6, we then have that for all f € [Pw — Pw], z € Pw,

flz) = |_|{f(d) | d a finite set,d C z}.

Thus, any continuous function f € [Pw — Pw] can be coded as an element of Pw.
With D = Pw our adjunction (¥, ®) will be of type:

® : Pw — [Pw — Puw]

¥ : [Pw = Pw] = Pw.

We will now define a particular coding of functions over sets as sets. The coding proceeds in two
steps. First, we will require a coding of a finite set (i.e., a compact element of Pw) to a value n € Nat.
For finite set {ko,...,km—1}, ko < ... < km—1, Define

set-code({ko, - -, km_1}) = Dicm2F.
For example, set-code({0, 2,3}) = 13.
Proposition 7 set-code() is a bijection mapping {x € Pw | z is compact} onto Nat.
Next we require a coding of pairs of natural numbers as a natural number. For n, m € Nat, let
pair-code(n,m) = 1/2(n+m)(n+m + 1) + m.

pair-code(n, m) can be interpreted as cartesian coordinates in the following table:

9 13

5 8 12

2 4 7 11

0 1 3 6 10

For example, pair-code(1,3) = 13.
Proposition 8 pair-code(,) is a bijection mapping Nat x Nat onto Nat.

With these defined, the maps are now:

=
=
|

{pair-code(set-code(z),m) | m € f(z)}
®(u)(z) = {m|3In=set-code(y),y C z, and pair-code(n, m) € u}.

For example, let
1 € [Pw = Pu] = {({0,3}, {4,6}), ({8}, {1,9}), . }.
Then
¥(f) = {pair-code(9,4), pair-code(9, 6), pair-code(256, 1), pair-code(256,9), ...}
= {95,126,33154,...}.

Thus, we have shown that Pw together with the continuous functions over Pw provide a solution as
outlined above. It should be noted that the domain Pw is rarely used today except as a pedogogical
tool for constructing the isomorphism above. As a complete lattice it contains lubs (and greatest lower

bounds) of all subsets, but one is really only interested in lubs of chains of approximations. The student
is referred to [Sch86] Ch. 11 for a more in depth discussion of reflexive domains.

4 Summary

We have developed the basics of domain theory which underlies the Scott-Strachey approach to program-
ming language theory. It should be noted that we have barely scratched the surface — domain theory is
an active research area with new types of domains being proposed for various purposes.

References

[Bar84] H. Barendregt. The Lambda Calculus — Its Syntaz and Semantics. North Holland Press,
Amsterdam, 1984.

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[Sch86] D. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and
Bacon, 1986.

[Sto77] J. Stoy. Denotation Semantics: The Scott-Strachey Approach to Programming Language Theory.
MIT Press, 1977.

