Monads as containers - HaskellWiki 07/05/2007 10:58 PM

Edit this page | Discuss this page | Page history | What links here | Related changes

Monads as containers

Categories: Tutorials | Monad

There now exists a translation of this article into Russian!

A monad is a container type together with a few methods defined on it. Monads model different
kinds of computations.

Like Haskell lists, all the elements which a monadic container holds at any one time must be
the same type (it is homogeneous).

There are a few ways to choose the basic set of functions that one can perform on these
containers to be able to define a monad. Haskell generally uses a pair of functions called return
and bind (>>=), but it is more natural sometimes to begin with map (£map), return and join, as
these are simpler to understand at first. We can later define bind in terms of these.

The first of these three, generally called map, (but called £map in Haskell 98) actually comes
from the definition of a functor. We can think of a functor as a type of container where we are
permitted to apply a single function to every object in the container.

That is, if £ is a functor, and we are given a function of type (a2 -> b), and a container of type (£
a), we can get a new container of type (£ b).

This is expressed in the type of fmap:
fmap :: (Functor f) => (a -=> b) -> f a -> £ b

If you will give me a blueberry for each apple | give you (a -> b), and | have a box of apples (£
a), then | can get a box of blueberries (£ b).

Every monad is a functor.

The second method, return, is specific to monads. If m is @ monad, then return takes an element
of type a, and gives a container of type (m a) with that element in it. So, its type in Haskell is

return :: (Monad m) => a -> m a
If I have an apple (a) then | can put itin a box (m a).

The third method, join, also specific to monads, takes a container of containers m (m a), and
combines them into one m a in some sensible fashion. Its Haskell type is

join :: (Monad m) => m (m a) -> m a

If I have a box of boxes of apples (m (m a)) then | can take the apples from each, and put
them in a new box (m a).

From these, we can construct an important operation called bind or extend, which is commonly
given the symbol (>>=). When you define your own monad in Haskell, it will expect you to

http://haskell.org/haskellwiki/Monads_as_containers Page 1 of 7

Monads as containers - HaskellWiki 07/05/2007 10:58 PM

define just return and bind. It turns out that mapping and joining come for free from these two.
Although only return and bind are needed to define a monad, it is usually simpler to think about
map, return, and join first, and then get bind from these, as map and join are in general simpler
than bind.

What bind does is to take a container of type (m a) and a function of type (a -> m b). It first
maps the function over the container, (which would give anm (m b)) and then applies join to
the result to get a container of type (m b). Its type and definition in Haskell is then

(>>=) :: (Monad m) => m a -> (a -=> m b) -=>m b
xs >>= f = join (fmap f xs)
-- how we would get bind (>>=) in Haskell if it were join and fmap

-- that were chosen to be primitive

If I have a box of apples (m a) and for each apple, you will give me a box of blueberries (a -> m
b) then | can get a box with all the blueberries together (m b).

Note that for a given container type, there might be more than one way to define these basic
operations (though for obvious reasons, Haskell will only permit one instance of the Monad
class per actual type). [Technical side note: The functions return and bind need to satisfy a few
laws in order to make a monad, but if you define them in a sensible way given what they are
supposed to do, the laws will work out. The laws are only a formal way to give the informal
description of the meanings of return and bind | have here.]

It would be good to have a concrete example of a monad at this point, as these functions are
not very useful if we cannot find any examples of a type to apply them to.

Lists are most likely the simplest, most illustrative example. Here, fmap is just the usual map,
return IS just (\x -> [x]) and join iS concat.

instance Monad [] where
--return :: a -> [a]
return x = [X] -- make a list containing the one element given
-=(>>=) :: [a] -> (a => [b]) -> [b]
xs >>= f = concat (map f xs)

—-— collect up all the results of f (which are lists)
-- and combine them into a new list

The list monad, in some sense, models computations which could return any number of values.
Bind pumps values in, and catches all the values output. Such computations are known in
computer science as nondeterministic. That is, a list [x,y,z] represents a value which is all of the
values x, y, and z at once.

A couple examples of using this definition of bind:
[10,20,30] >>= \x -> [x, x+1]
-- a function which takes a number and gives both it and its
-- successor at once

= [10,11,20,21,30,31]

[10,20,30] >>= \x -> [x, xX+1] >>= \y -> if y > 20 then [] else [y,V]
= [10,10,11,11,20,20]

And a simple fractal, exploiting the fact that lists are ordered:

http://haskell.org/haskellwiki/Monads_as_containers Page 2 of 7

Monads as containers - HaskellWiki 07/05/2007 10:58 PM

£fx | x == "#
| otherwise

||# #u

"#" >>= £ >>= f >>= £ >>= f
= "# # # # # # # # # # # # # # # #"

You might notice a similarity here between bind and function application or composition, and
this is no coincidence. The reason that bind is so important is that it serves to chain
computations on monadic containers together.

You might be interested in how, given just bind and return, we can get back to map and join.

Mapping is equivalent to binding to a function which only returns containers with a single value
in them -- the value that we get from the function of type (a -> b) which we are handed.

The function that does this for any monad in Haskell is called 1iftm -- it can be written in terms
of return and bind as follows:

1liftM :: (Monad m) => (a -=> b) -=>ma ->mb

liftM £ xs = xs >>= (return . f)
-- take a container full of a's, to each, apply £,
-- put the resulting value of type b in a new container,
-- and then join all the containers together.

Joining is equivalent to binding a container with the identity map. This is indeed still called join

in Haskell:
join :: (Monad m) => m (m a) -> m a
join xss = xss >>= id

It is common when constructing monadic computations that one ends up with a large chain of
binds and lambdas. For this reason, some syntactic sugar called "do notation" was created to
simplify this process, and at the same time, make the computations look somewhat like
imperative programs.

Note that in what follows, the syntax emphasizes the fact that the list monad models
nondeterminism: the code y <- xs can be thought of as y taking on all the values in the list xs
at once.

The above (perhaps somewhat silly) list computations could be written:

do x <- [10,20,30]
[x, x+1]

and,
do x <- [10,20,30]
y <- [x, x+1]
if y > 20 then [] else [y,V]
The code for liftM could be written:

1liftM £ xs = do a <- Xs
return (f a)

If you understood the above, then you have a good start on understanding monads in Haskell.

http://haskell.org/haskellwiki/Monads_as_containers Page 3 of 7

Monads as containers - HaskellWiki 07/05/2007 10:58 PM

Check out Maybe (containers with at most one thing in them, modelling computations that
might not return a value) and State (modelling computations that carry around a state
parameter using an odd sort of container described below), and you'll start getting the picture
as to how things work.

A good exercise is to figure out a definition of bind and return (or fmap, join and return) which
make the following tree type a monad. Just keep in mind what they are supposed to do.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

For more good examples of monads, and lots of explanation see All About Monads which has a
catalogue of the commonest ones, more explanation as to why you might be interested in
monads, and information about how they work.

The question that many people will be asking at this point is "What does this all have to do with
107",

Well, in Haskell, 10 is a monad. How does this mesh with the notion of a container?

Consider getchar :: 10 char -- thatis, an IO container with a character value in it. The exact
character that the container holds is determined when the program runs by which keys the user
presses. Trying to get the character out of the box will cause a side effect: the program stops
and waits for the user to press a key. This is generally true of 10 values - when you get a value
out with bind, side effects can occur. Many 10 containers don't actually contain interesting
values. For example,

putStrLn "Hello, World!" :: IO ()

That is, the value returned by putstrin "Hello, world!" is an IO container filled with a value of
type (), a not so interesting type. However, when you pull this value out during a bind
operation, the string sel1o, world! is printed on the screen. So another way to think about
values of type 10 t is as computations which when executed, may have side effects before
returning a value of type t.

One thing that you might notice as well, is that there is no ordinary Haskell function you can call
(at least not in standard Haskell) to actually get a value out of an 10 container/computation,
other than bind, which puts it right back in. Such a function of type 10 a -> a would be very
unsafe in the pure Haskell world, because the value produced could be different each time it
was called, and the 10 computation could have side effects, and there would be no way to
control when it was executed (Haskell is lazy after all). So how do 10 actions ever get run? The
IO action called main runs when the program is executed. It can make use of other 10 actions in
the process, and everything starts from there.

When doing 10, a handy special form of bind when you just want the side effects and don't care
about the values returned by the container on the left is this:

(>>) :: Monad m => ma ->m b ->m b
m>>k = m>=_->k

An example of doing some 1O in do notation:
main = do putStrLn "Hello, what is your name?"
name <- getLine

putStrLn ("Hello " ++ name ++ "!")

http://haskell.org/haskellwiki/Monads_as_containers Page 4 of 7

Monads as containers - HaskellWiki 07/05/2007 10:58 PM

or in terms of bind, making use of the special form:

main = putStrLn "Hello, what is your name?" >>
getLine >>= \name ->
putStrLn ("Hello " ++ name ++ "!")

or, very primitive, without the special form for bind:

main = putStrLn "Hello, what is your name?" >>= \x ->
getLine >>= \name ->
putStrLn ("Hello " ++ name ++ "!")

Another good example of a monad which perhaps isn't obviously a container at first, is the
Reader monad. This monad basically consists of functions from a particular type: ((->) e),
which might be written (e ->) if that were supported syntax. These can be viewed as
containers indexed by values of type e, having one spot for each and every value of type e. The
primitive operations on them follow naturally from thinking this way.

The Reader monad models computations which read from (depend on) a shared environment.
To clear up the correspondence, the type of the environment is the index type on our indexed
containers.

type Reader e = (->) e -- our monad
Return simply produces the container having a given value at every spot.

return :: a -> (Reader e a)
return x = (\k -> x)

Mapping a function over such a container turns out to be nothing more than what composition

does.
fmap :: (a -> b) -> Reader e a -> Reader e b
= (a -> b) -> (e -> a) -> (e -> b)
-- by definition, (Reader a b) = (a -> b)
fmap £ xs = £ . xs

How about join? Well, let's have a look at the types.

join :: (Reader e) (Reader e a) -> (Reader e a)
= (e -=> e -> a) -> (e -> a) -- by definition of (Reader a)

There's only one thing the function of type (e -> a) constructed could really be doing:
join xss = (\k -> xss k k)

From the container perspective, we are taking an indexed container of indexed containers and
producing a new one which at index k, has the value at index x in the container at index k.

So we can derive what we want bind to do based on this:

(>>=) :: (Reader e a) -> (a -> Reader e b) -> (Reader e b)
= (e -=> a) -> (a -> (e => b)) -> (e -=> b) -- by definition
xs >>= f = join (fmap f xs)

http://haskell.org/haskellwiki/Monads_as_containers Page 5 of 7

Monads as containers - HaskellWiki 07/05/2007 10:58 PM

join (f . xs)
(\k => (£ . xs) k k)
(\k => £ (xs k) k)

Which is exactly what you'll find in other definitions of the Reader monad. What is it doing?
Well, it's taking a container xs, and a function £ from the values in it to new containers, and
producing a new container which at index k, holds the result of looking up the value at x in xs,
and then applying £ to it to get a new container, and finally looking up the value in that container
at k.

The Monads as computation perspective makes the purpose of such a monad perhaps more
obvious: bind is taking a computation which may read from the environment before producing a
value of type a, and a function from values of type a to computations which may read from the
environment before returning a value of type b, and composing these together, to get a
computation which might read from the (shared) environment, before returning a value of type
b.

How about the State monad? Although I'll admit that with State and 1O in particular, it is
generally more natural to take the view of Monads as computation, it is good to see that the
container analogy doesn't break down. The state monad is a particular refinement of the reader
monad discussed above.

| won't go into huge detail about the state monad here, so if you don't already know what it's for,
what follows may seem a bit unnatural. It's perhaps better taken as a secondary way to look at
the structure.

For reference to the analogy, a value of type (state s a) is like a container indexed by values
of type s, and at each index, it has a value of type a and another, new value of type s. The
function runstate does this "lookup".

newtype State s a = State { runState :: (s -> (a,s)) }

What does return do? It gives a state container with the given element at every index, and with
the "address" (a.k.a. state parameter) unchanged.

return :: a -> State s a
return x = State (\s -> (x,s))

Mapping does the natural thing, applying a function to each of the values of type a, throughout
the structure.

fmap :: (a -> b) -> (State s a) -> (State s b)
fmap £ (State m) = State (onvVal £ . m)
where onval f (x, s) = (f x, s)

Joining needs a bit more thought. We want to take a value of type (state s (state s a)) and
turn itinto a (state s a) in a natural way. This is essentially removal of indirection. We take the
new address and new box that we get from looking up a given address in the box, and we do
another lookup -- note that this is almost the same as what we did with the reader monad, only
we use the new address that we get at the location, rather than the same address as for the
first lookup.

So we get:

http://haskell.org/haskellwiki/Monads_as_containers Page 6 of 7

Monads as containers - HaskellWiki 07/05/2007 10:58 PM

join :: (State s (State s a)) -> (State s a)
join xss = State (\s -> uncurry runState (runState xss s))

| hope that the above was a reasonably clear introduction to what monads are about. Feel free
to make criticisms and ask questions.

- CaleGibbard

Retrieved from "http://haskell.org/haskellwiki/Monads_as_containers"

This page has been accessed 6,040 times. This page was last modified 01:45, 2 June 2007.
Recent content is available under a simple permissive license.

http://haskell.org/haskellwiki/Monads_as_containers Page 7 of 7

