
CMPT 383 Comparative Programming Languages Summer 2009

Syntax

1 Grammars

Once upon a time the textbook for MACM 101 was Discrete Mathematics and Its
Applications, 4th edition, by K.H. Rosen, McGraw Hill, 1999, and the course
content included regular and context-free grammars.

I will use some of the definitions and notations from Rosen in these lectures.

Notational Note: Notation, and to some extent definitions, differ from one book
to another.

Syntax F. Warren Burton 1

CMPT 383 Comparative Programming Languages Summer 2009

On page 631 of Rosen we find:

DEFINITION 1. A vocabulary (or alphabet) is a finite, nonempty set of
elements called symbols. A word (or sentence) over is a string of finite length
of elements of . The empty string or null string, denoted by , is the string
containing no symbols. The set of all words over is denoted by . A
language over is a subset of .

For example, might be the set of ASCII (or Unicode) characters, so would
be the set of possible contents of a text file using this character set.

In Haskell terms, if is the set of values for type Char, perhaps excluding
, then would be the set of Haskell strings, excluding partial and infinite

strings, and perhaps excluding strings containing .

Syntax F. Warren Burton 2

CMPT 383 Comparative Programming Languages Summer 2009

If for some alphabet , then we write for the concatenation of
and . Concatenation corresponds to appending in Haskell, so in Haskell we
would write u++v instead of .

We will generalize the concept of concatenation to sets of strings (languages). If
then .

When appropriate, we will interpret (coerce) a symbol to be a string of length one,
or interpret a string to be a singleton set of strings (a one word language). Hence,
a symbol may denote the symbol itself, a word or a language, depending on
context.

Syntax F. Warren Burton 3

CMPT 383 Comparative Programming Languages Summer 2009

Let be any set of strings. We define

Notice that and that , as previously defined, is just with
.

Syntax F. Warren Burton 4

CMPT 383 Comparative Programming Languages Summer 2009

On this page of these notes we find:

DEFINITION: A production is a relation on . We write to mean
.

Returning to page 631 of Rosen we find:

DEFINITION 2. A phrase-structured grammar consists of a
vocabulary , a subset of consisting of the terminal elements, a start
symbol from , and a set of productions . The set is denoted by .
Elements of are called nonterminal symbols. Every production in must
contain at least one nonterminal on the left side.

In practice, we will be interested only in productions in . That is, in the
grammars that we will study, productions will always have only a single
nonterminal (and no terminals) on the left side.

Syntax F. Warren Burton 5

CMPT 383 Comparative Programming Languages Summer 2009

From page 632 of Rosen we have:

DEFINITION 3. Let be a phrase-structured grammar. Let
(that is, the concatenation of , , and) and be strings

over . If is a production of , we say that is directly derivable from
and we write . If , are strings over such

that , then we say that is derivable
from , and we write . The sequence of steps used to obtain
from is called a derivation.

Syntax F. Warren Burton 6

CMPT 383 Comparative Programming Languages Summer 2009

Still on page 632, (with a couple of minor errors fixed), Rosen says:

DEFINITION 4. Let be a phrase-structured grammar. The
language generated by (or the language of), denoted by , is the set of
all strings of terminals that are derivable from the start symbol . In other words,

.

Syntax F. Warren Burton 7

CMPT 383 Comparative Programming Languages Summer 2009

1.1 Regular Languages

A regular grammar (or Chomsky type 3 grammar) is one where every
production is either the production , or the left side is an element of and
the right side is an element of . (That is, the left side is a single
nonterminal and the right side is either a nonterminal, a terminal, or a terminal
followed by a nonterminal. Note, in particular, that a nonterminal followed by a
terminal is not allowed.)

The language generated by a regular grammar is called a regular language .

Notational Note: Some books do not allow a regular language (or a
context-free languages, considered later) to include the empty string, .

Syntax F. Warren Burton 8

CMPT 383 Comparative Programming Languages Summer 2009

1.1.1 Regular Expressions

A regular language can also be defined by a regular expression .

Many text editors and several programming languages support regular
expressions. Unfortunately, these almost always use slightly different definitions
of regular expressions, mainly because of extra features. Furthermore, these
extra features usually mean that some languages that are not regular can be
defined, in addition to all actual regular languages.

That is, regular expressions in software tools are not regular expression at all. It is
rather like British public schools being private schools, or Algol not being an
Algol-like language. A definition has evolved away from its original meaning.

Syntax F. Warren Burton 9

CMPT 383 Comparative Programming Languages Summer 2009

DEFINITION: A regular expression over an alphabet is

1. ,

2. ,

3. for any terminal symbol ,

4. where and are any two regular expressions,

5. where and are any two regular expressions, and

6. where is any regular expression.

To reduce the number of parentheses we will assume that binds more tightly
than concatenation and catenation binds more tightly than .

For example,

means

Syntax F. Warren Burton 10

CMPT 383 Comparative Programming Languages Summer 2009

A regular expression denotes a language in the obvious way.

We can formally define the meaning of a regular expression as follows.

where , and are arbitrary regular expressions and in any element of
.

It turns out the a language can be defined by a regular expression iff it can be
defined by a regular grammar.

Syntax F. Warren Burton 11

CMPT 383 Comparative Programming Languages Summer 2009

1.1.2 Finite State Machines

The time required to determine if a string is in a given regular language is
proportional to the length of the string, and the memory required has a constant
bound unrelated to the length of the string.

We say that a regular language can be recognized by a finite state machine .

Syntax F. Warren Burton 12

CMPT 383 Comparative Programming Languages Summer 2009

1.2 Context-Free Languages

A context-free grammar (or Chomsky type 2 grammar) is one where the left
side of every production is an element of . The language generated by a
context-free grammar is called a context-free language .

Other, more general, grammars allow strings of terminals and nonterminal on the
left side, so that a production can be used only in certain “contexts”. These more
powerful grammars now are rarely, if ever, used when defining the syntax of a
programming language. Instead, a superset of all valid programs is defined using
a context-free grammar, and further restrictions are used to exclude
“meaningless” programs.

Syntax F. Warren Burton 13

CMPT 383 Comparative Programming Languages Summer 2009

The term static semantics is usually used for the collection of rules for
excluding “meaningless” programs.

For example, the type correctness of a program is normally expressed by the
static semantics of a language.

The static semantics of a language is often expresses as a function that returns a
Boolean result.

We will limit our attention to the syntax of languages.

Syntax F. Warren Burton 14

CMPT 383 Comparative Programming Languages Summer 2009

1.2.1 BNF

BNF is a commonly used notation for expressing the productions of a
context-free language.

Notational Note: There are many different variations of BNF. In fact, there isn’t
even agreement on what “BNF” stands for.

Originally, “BNF” stood for Backus Normal Form, but now it is generally taken to
stand for Backus Naur Form.

When BNF was introduced, programming language definitions were usually
printed with a typewriter, not typesetting software.

Syntax F. Warren Burton 15

CMPT 383 Comparative Programming Languages Summer 2009

The key feature of context-free grammars expressed using BNF is that
productions with the same left side may be combined with alternative right sides
separated by vertical bars.

Several less important conventions are used with traditional BNF.

Nonterminals are contained inside angle brackets (because typewriters only
have one font).

The infix operator is used instead of (because typewriters don’t have a
key).

Terminal symbols are enclosed in quotation marks if necessary.

Syntax F. Warren Burton 16

CMPT 383 Comparative Programming Languages Summer 2009

For example,

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9

<integer> ::= -<positive> | <positive>
<positive> ::= <digit> | <digit><positive>

Extended BNF, consider shortly, will allow us to simplify the above as follows.

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9

<integer> ::= [-]<digit> <digit>

Syntax F. Warren Burton 17

CMPT 383 Comparative Programming Languages Summer 2009

1.2.2 Extended BNF

With Extended BNF ,

Optional items can be enclosed in square brackets, [].

An item enclosed in curly brackets, , may be repeated, so that it occurs
zero or more times.

Ordinary parentheses, (), can be used for grouping.

The vertical bar, |, may be used within groupings.

Syntax F. Warren Burton 18

CMPT 383 Comparative Programming Languages Summer 2009

For example,
<integer> ::= [-|+]<digit> <digit>

indicates that an <integer> may or may not have a sign, while
<integer> ::= (-|+)<digit> <digit>

indicates that an <integer> must have a sign.

In <expression> ::=
<identifier> |
‘‘(’’<expression><operator><expression>‘‘)’’

the parentheses are in quote to make it clear that they are terminal symbols, not
meta symbols used for grouping.

Syntax F. Warren Burton 19

CMPT 383 Comparative Programming Languages Summer 2009

In modern usage, different fonts are usually used to distinguish terminal symbols,
nonterminal symbols and meta symbols, making the use of angle brackets and
quotes unnecessary.

Usually, each programming language definition uses its own unique variation of
BNF when specifying the language syntax.

There is a BNF standard, somewhere, but by the time BNF was standardized it
was too late to do much good. There is so much variation in BNF that there really
isn’t a default version, and I have never seen a document that claims to use
standard BNF.

Syntax F. Warren Burton 20

CMPT 383 Comparative Programming Languages Summer 2009

1.3 Using Grammars

There are several way to think informally about context-free grammars.

1.3.1 Language Generation

A context-free grammar can be regarded as a collection of recursive set
equations.

These equations define the set of strings in a language, or generate the language.

Syntax F. Warren Burton 21

CMPT 383 Comparative Programming Languages Summer 2009

A closely related way of viewing a context-free grammar is as a nondeterministic
algorithm. (A regular grammar can be considered a special case of a context-free
grammar.)

At each step during a derivation, we have two sorts of choices. We can decide
which nonterminal to replace next, and which production to use in the
replacement.

Syntax F. Warren Burton 22

CMPT 383 Comparative Programming Languages Summer 2009

The choice of which nonterminal to replace isn’t very important. In a context-free
language, that nonterminal will be replaced sooner or later, and the set of possible
productions to use in replacing that nonterminal will remain the same.

We can replace the nonterminals in any order, so for simplicity, let us assume that
we will always replace the leftmost nonterminal. This results in a leftmost
derivation .

With a context-free grammar, if a string is derivable from the start symbol then it is
derivable using a leftmost derivation.

Syntax F. Warren Burton 23

CMPT 383 Comparative Programming Languages Summer 2009

The choice of which production to use at each step of the leftmost derivation
determines which string in the language will be generated by this nondeterministic
process. Every string in the language, and only strings in the language, may be
generated by this nondeterministic process. We note that, except in the very
boring case of a finite language, the nondeterministic algorithm may fail to
terminate.

(We make no assumptions about “fairness” or probabilities. We are interested
only in what are the possible derivations.)

Syntax F. Warren Burton 24

CMPT 383 Comparative Programming Languages Summer 2009

We can think of the nondeterministic algorithm in terms of a choice tree. Each
node corresponds to a string over . The root corresponds to the start symbol, ,
as a string of length one, and the children of each node correspond to the strings
that can be generated by replacing the leftmost nonterminal in the parent by each
of the possible right sides of productions having that nonterminal on the left.

The leaves of this (usually infinite) tree are the strings in the language. The path
from the root to a leaf indicates the sequence of choices made when generating
the string at the leaf.

(Don’t confuse this with a parse tree, which is a finite tree corresponding to a
single string in the language.)

Syntax F. Warren Burton 25

CMPT 383 Comparative Programming Languages Summer 2009

1.3.2 Recognition

A language recognizer is an algorithm that determines whether a string is in a
particular language.

Essentially, language recognizers work by seeing if a string can be generated by
the grammar for the language. In effect, a recognizer must search the tree
described on the previous page for a leaf corresponding to the string in question.

Of course, for this to be done reasonably efficiently, there must be a lot of pruning.
Only a relative small portion of the tree should need to be explored.

Syntax F. Warren Burton 26

CMPT 383 Comparative Programming Languages Summer 2009

2 Parsing

Parsing is similar to recognition, except we want to know the sequence of choices
that would need to be made to generate a given string using a fixed grammar.

There is another way to look at this. When we write a program, we are not really
thinking of a string of characters. We have more structure in mind. What we really
have in mind is closer to being a tree than a string.

For example, a loop has several parts, including the loop body. Each of these
parts may be decomposed into further parts, and so on.

Syntax F. Warren Burton 27

CMPT 383 Comparative Programming Languages Summer 2009

Even a tree structure doesn’t fully capture what we have in mind when we think
about a program. There are many relationships that are not reflected in a
hierarchical decomposition of a program into its component. For example, the
requirement that the use of a variable is consistent with its declared type is not
captured by a tree structure.

It is possible to define a context-sensitive grammar that will capture additional
information such as this. For example, the programming language Algol 68 has its
syntax defined using a context-sensitive grammar. The grammar specifies fully
what is and what is not a valid program.

Syntax F. Warren Burton 28

CMPT 383 Comparative Programming Languages Summer 2009

In practice, it has been found to be far simpler to define programming languages
with context-free grammars. The cost of this is that the language generated by the
grammar includes all legal programs and a number of illegal ones as well.

As mentioned earlier, a “static semantics” is used to separate the valid and invalid
(“meaningless”) programs that are generated by the context-free grammar.

We will restrict our attention to the tree structure implied by the context-free
grammar, for now.

The tree corresponding to a string in a language is called the parse tree of the
string. Each internal node of a parse tree contains a nonterminal symbol and
each leaf contains a terminal.

Syntax F. Warren Burton 29

CMPT 383 Comparative Programming Languages Summer 2009

A context-free grammar more or less describes two things.

1. The structure of parse trees.

2. The mapping from a string representation of a program (or string in a
language) to a corresponding parse tree.

In theory, the grammar should also tell us how to go from a parse tree back to the
original string. In practice, we tend to throw out a lot of unimportant information,
such as details about the white space, when constructing a parse tree.

Syntax F. Warren Burton 30

CMPT 383 Comparative Programming Languages Summer 2009

2.1 Lexical and Context-Free Syntax

Usually, the parsing of computer programs is divided into two stages. (In practice,
these stages may be intertwined with each other, and with other processes that
conceptually occur later in the compilation of a program.)

Often, the description of a programming language is divided into two parts in a
similar manner, where the lexical syntax groups symbols into tokens and the
context-free syntax is defined over these tokens rather than individual characters.

With other languages, this distinction is not made in the formal definition of the
language, but this division is reflected in the fact that the simplest object in the
language, such as identifiers and constants, have a regular syntax, even if it is
expressed in the form of a context-free grammar.

Syntax F. Warren Burton 31

CMPT 383 Comparative Programming Languages Summer 2009

2.1.1 Lexical Syntax

The lexical analysis or scanning of a program breaks it into a sequence of
tokens. For example, a sequence of letters and digits may be transformed into a
single token representing an identifier. Similarly, numbers of various types are
tokens. Some tokens may correspond to individual symbols in the original string.
For example, the character + may generate a single token. Even in this case, the
resulting token has been recognized as an operator and the token will normally
carry this information.

Each type of token is defined by a regular language. The lexical analysis of a
program basically simulates a finite state machine.

Syntax F. Warren Burton 32

CMPT 383 Comparative Programming Languages Summer 2009

The maximal munch rule, which is used in the lexical definition of most
programming languages, says that the longest possible initial portion of the
unread input should be incorporated into the next token.

For example, “casement ” would be recognized as an identifier,
“casement” followed by white space, rather than the keyword case followed
by the identifier “ment” (or eight one letter identifiers).

The need for the maximal munch rule (sometimes called the principal of the
longest substring) arises because we are recognizing a sequence of tokens, one
after another, in a single string.

Syntax F. Warren Burton 33

CMPT 383 Comparative Programming Languages Summer 2009

The finite state machine often will need to consider several possible types of
tokens at the same time. For example, if the first three characters in the token
currently being processed are “cas”, then the state of the finites state machine
should reflect the fact that these may be the first three characters of an identifier,
or the first three letters of the reserved word case.

With this two stage view, of scanning followed by syntactic analysis , the
scanning or lexical analysis stage would not distinguish between different sorts of
things where the difference is not reflected in the sequence of characters
comprising the token.

Syntax F. Warren Burton 34

CMPT 383 Comparative Programming Languages Summer 2009

For example, Haskell identifiers beginning with upper case letters are
distinguished from identifiers beginning with lower case letters. The names of
constructors, type constructors, type classes and
modules all begin with upper case letters and otherwise have the same syntax.
These four different sorts of identifiers are distinguished by context, but would be
regarded as having tokens of the same type by a scanner.

Syntax F. Warren Burton 35

CMPT 383 Comparative Programming Languages Summer 2009

The description of the syntax of a language may not fully reflect the division
between lexical analysis and syntactic analysis. For example, the Haskell Lexical
Syntax, given in section 9.2 of the Haskell Report, contains the productions

tycons conid

tycls conid

monid conid

reflecting the fact that constructors, type constructors, type classes and modules
all have the same form and can be distinguished only by context. We would
regard this differentiation as part of the context-free syntax.

Syntax F. Warren Burton 36

CMPT 383 Comparative Programming Languages Summer 2009

2.1.2 Context-Free Syntax

The context-free syntax of a programming language defines a language over the
tokens.

In theory, all identifiers of a particular type are identical. Similarly, all floating point
constants are identical. Otherwise, we would not have a finite vocabulary as
required by the definition of a phrase-structured grammar.

Of course, the actual names of identifiers, or at least sufficient information to
distinguish identical identifiers from different identifiers, must be retained for later
stages in compilation.

For example, type checking must be able to associate a declaration with each use
of a variable (if variables must be declared). Even more important, the contents of
different variables must be stored in different locations!

Syntax F. Warren Burton 37

CMPT 383 Comparative Programming Languages Summer 2009

2.2 Parse Trees and Abstract Syntax Trees

A parse tree reflects how a string was parsed.

Each internal node of a parse tree is labeled with a nonterminal and each leaf
node is labeled with a terminal. A parse tree will have the start symbol at its root
node. Concatenating the leaves from left to right will give the string that was
parsed.

When we parse a program, we determine a derivation of the program. In the
derivation, each nonterminal is replaced, at some step, with a string over . The
subtrees of an internal node are labeled by the symbols from the right side of the
production that was applied to the label of the parent in the derivation.

Syntax F. Warren Burton 38

CMPT 383 Comparative Programming Languages Summer 2009

In practice, much of the information in a full parse tree can be discarded.

For example, with a production

if-statement
if expression then statement else statement

we know that an if-statement always generates an if and a then and
an else. It is simpler to leave these out of the tree completely.

Syntax F. Warren Burton 39

CMPT 383 Comparative Programming Languages Summer 2009

Similarly, if we have an expression x-(y+z), the parentheses are necessary in
the original program text, but may be dropped from the resulting tree since the
tree structure reflects this information.

expr

expr - expr

x expr + expr

y z

Syntax F. Warren Burton 40

CMPT 383 Comparative Programming Languages Summer 2009

A parse tree with this unnecessary information removed is called an abstract
syntax tree (or just a syntax tree).

Syntax F. Warren Burton 41

CMPT 383 Comparative Programming Languages Summer 2009

2.2.1 Abstract Syntax

Abstract syntax is syntax that corresponds to an abstract syntax tree rather
than a parse tree. Abstract syntax may not relate well to a raw string of symbols.
For example, there is no need for parentheses in an abstract syntax tree
representation of an expression, but these are sometimes necessary with a
textual expression.

Haskell datatypes are well suited for expressing abstract syntax.

Syntax F. Warren Burton 42

CMPT 383 Comparative Programming Languages Summer 2009

2.3 Associativity and Precedence

Binary operators with different associativity and precedence are found in most
programming languages. The grammar for the language usually indicates how
expressions should be parsed.

The C++ definition has many different expressions to represent the precedence
and associativity of operators. (See Section 1.4 of Appendix A of the C++
Standard.) (Actually, I have a working draft of the standard, dated December
1996, so the location of the grammar may have been moved in the final version of
the standard.)

Syntax F. Warren Burton 43

CMPT 383 Comparative Programming Languages Summer 2009

The syntax of Java, as given in Chapter 18 (Syntax) of Java Language
Specification, Second Edition does not indicate the precedence of operators, but
the grammar given in Chapter 15 (Expressions) does (see sections 15.17 and
15.18 for example).

In Section 9.5 of the Haskell Report, an indexing scheme is used to compactly
represent a collection of productions.

Syntax F. Warren Burton 44

CMPT 383 Comparative Programming Languages Summer 2009

2.4 Ambiguity

A grammar is said to be ambiguous if there exists at least one string that has
two or more different parse trees (or equivalently, has at least two different
leftmost derivations.)

For the most part, you want a grammar defining a language to be unambiguous.
Occasionally, a grammar will be ambiguous, with an English language explanation
as to how the ambiguity should be resolved.

Syntax F. Warren Burton 45

CMPT 383 Comparative Programming Languages Summer 2009

For example, the lambda calculus is often defined by the grammar

exp constant
variable
exp exp

variable exp
exp

together with a couple of rules to disambiguate the grammar.

1. Function application is left associative.

2. The body of a -expression extends as far to the right as possible.

Syntax F. Warren Burton 46

CMPT 383 Comparative Programming Languages Summer 2009

I would like to thank Tai Meng for many corrections and suggestions for
improvements to these notes. Of course, the remaining errors are my fault.

Syntax F. Warren Burton 47

