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Logic Programming

Logic programming grew out of work on automatic theorem proving.

It was noticed that by trying to prove a carefully chosen predicate, a proof could

provide the solution to a computational problem.
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1 First Order Predicate Calculus

In the first order predicate calculus, quantifiers (i.e. and ) can be applied to

variables but not functions or predicates. Also, predicates can’t occur in the

arguments of other predicates.

In the second order predicate calculus, predicates can take first order predicates

as arguments.

Prolog and other logic programming languages are based on the first order

predicate calculus.
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1.1 Syntax

The syntax of the predicate calculus is:

const identifier

var identifier

fn identifier

pred identifier

term const | var | fn(termlist)

termlist term | term, termlist

atom pred | pred(termlist)

connectives |

quantifier ( var) | ( var)

formula atom | (formula)

| quantifier(formula)

| (formula) connective (formula)
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Notes on Syntax:

1. In the predicate calculus, you can tell from the form of an identifier whether it

is a constant (const), a variable (var), a function symbol (fn) or a

predicate symbol (pred).

Predicate names occur only at the top level, and function names never occur

at the top level. That is, function names only occur within the arguments of a

predicate, and predicate names never occur within an argument of another

predicate.

2. In the predicate calculus, the names of function and predicate symbols

indicate the number of arguments.

3. Sometimes const is not defined, and fns with zero arguments are used

instead. You may wish to think of constants as functions with no arguments.
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The term well-formed formula or WFF is used to mean a syntactically

correct formula.

The term literal is used to mean either an atom or the negation of an atom.

We may use and as connectives. It is understood that is just

shorthand for and is shorthand for .

The propositional calculus is the predicate calculus restricted to predicates that

have no arguments. Hence there are no functions or variables, and hence no

need for quantifiers.
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We will skip parentheses where this won’t lead to confusion. The unary operator

binds more tightly than which in turn binds more tightly than .

The scope of a quantifier extends as far to the right as possible.

For example,

( ( ( (( ) ))))

and

( ( ( )))
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Notes on Prolog Syntax:

1. Prolog doesn’t really distinguish between predicates and functions.

We will keep this distinction while talking about the predicate calculus.

However, like Prolog, we will usually use all lower case names for both.

2. Prolog will allow the same name to be used with different numbers of

arguments, but considers these to be different. We will use this convention.

For example, f(X,Y) and f(Z) are both terms, but the f in the first of

these is completely different from the f in the second.

3. Prolog uses upper case letters for variables. We will do the same.

4. Warning: Prolog uses the term atom to mean a const that is not an

integer. The definition of an atom in the predicate calculus is a formula

that contains no smaller subformulas. These definitions are not compatible!

Logic Programming F. Warren Burton 7



CMPT 383 Comparative Programming Languages Fall 2008

1.2 Free and Bound Variables

The free variables of a formula are defined as follows:

1. All variables in an atom are free.

2. The free variables of ( ), for any formula, , are the free variables of

.

3. The free variables of ( )connective( ) are the free variables of

and the free variables of .

4. The free variables of ( )( ) or ( )( ), for any var, , are the

free variables of except (if happens to be a free variable of ).
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An occurrence of in is said to be a bound occurrence if it is an occurrence

within a subformula of the form ( )( ) or ( )( ). Any other

occurrence of in is a free occurrence .

A formula is closed if it contains no free variables.

From now on we will consider only closed formula (except when we are talking

about a subformula of a closed formula).
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1.3 Interpretations, Validity and Satisfiability

An interpretation of a WFF consists of

1. a nonempty set , called the universe , which is the set of values that

variables may take,

2. for each constant an element , which will be the value of ,

3. for each function symbol taking arguments a function ,

and

4. for each predicate symbol taking arguments an -ary relation (i.e. a

subset of ).

For a given interpretation, a closed WFF is either true of false.

Logic Programming F. Warren Burton 10



CMPT 383 Comparative Programming Languages Fall 2008

1.3.1 Validity and Satisfiability

A WFF is valid iff it is true for every possible interpretation.

A WFF is satisfiable iff it is true for some interpretation.

Hence, a WFF is not valid if its negation is satisfiable. Similarly, a WFF is not

satisfiable if its negation is valid.
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1.3.2 Decidability of Validity

The validity of WFFs in the first order predicates calculus is not decidable, but it is

partially decidable. This means

1. There does not exist an algorithm that can always determine whether or not a

WFF is valid.

2. However, there does exist an algorithm that, when given a valid WFF, can

always verify that the WFF is valid. That is, if a WFF is valid, it is possible to

construct a proof for it.

If the algorithm that can verify (prove) any valid WFF is given an invalid WFF, it

must fail to terminate in some cases.

Of course, this means that we can’t put an upper bound on the amount of time

that might be required to verify a WFF.

We can prove that a WFF is unsatisfiable by verifying that its negation is valid.
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1.4 Clausal Form

A clause is a disjunction of literals.

Recall that:

A literal is either an atom or the negation of an atom.

An atom is a pred, optionally with arguments.

A disjunction is a collection of literals combined with the connective.

In other words, a clause is a WFF with no connectives, no quantifiers and with

negation applied only to atoms.

Implicitly, all variables in a clause are universally quantified.

A WFF in clausal form is a conjunction of clauses.
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We will be primarily interested in the unsatisfiability of clauses.

Given any WFF, , it is possible to construct a WFF, , in clausal form such that

is satisfiable iff is satisfiable. (Hence, is unsatisfiable iff is. However,

when is valid, may not be valid.)

We will use a slightly different notation for a WFF in clausal form.

In particular, each clause will be represented as a set of literals. Implicitly, the set

will denote the disjunction of its elements.

A WFF is a collection of clauses (technically a set of clauses, but generally

represented as a list of clauses).
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At this point in these notes, we are going to make a change in the coloring

convention. From now on, we will use

and another color with the typewriter

font for Prolog code.
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1.4.1 Skolemization

An interpretation assigns a value in the universe to each constant. A WFF such as

is satisfiable if and only if

is satisfiable, where is an unused name for a constant. This is because the

WFF is satisfiable iff there exists an interpretation, which assigns a value to

(among other things), that makes the WFF true.

Note: The bottom WFF (with the ) need not necessarily be valid, even if the top

WFF (with the ) is valid.
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Similarly,

can be changed to

where is an unused name for a function and , and are the universally

quantified variables that may determine the value of . That is, , and are

universally quantified variables that where in scope at the point where was

existentially quantified.
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This process for removing existential quantifiers is called Skolemization , after

the logician Skolem. A constant that replaces an existentially quantified variable is

called a Skolem constant and a function that is used in replacing a variable is

called a Skolem function .
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As another example, to remove quantifiers from

we need both a Skolem constant and a Skolem variable, giving
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In general, Skolemization preserves satisfiability but not necessarily validity.

If a WFF is satisfiable, then there exists an interpretation in which it is true. By

extending the interpretation for the original WFF by choosing appropriate values

for the Skolem constants and functions that replace existentially quantified

variables when the WFF is Skolemized, it is possible to construct an interpretation

for the Skolemized version of the WFF that is also true.

However, there are more possible interpretations for the Skolemized version of a

WFF, since the interpretations include values for the Skolem constants and the

Skolem functions.

When the original WFF is valid, the Skolemized version of the WFF, while

satisfiable, may not be valid. This is because the Skolemized version may be false

for certain choices of the Skolem constants and functions.
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For example,

is valid, and hence satisfiable, while the Skolemized version,

,

while still satisfiable, is no longer valid.

For any interpretation of the original WFF, clearly selecting to be makes the

top WFF true, so the WFF is valid.

For the Skolemized WFF, consider an interpretation where the universe is the set

of natural number, is , is the successor function that adds to its argument,

and is true if and only if its argument is zero. Now let be . The WFF is false

for this interpretation, and hence invalid.
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1.4.2 Converting to Clausal Form

We proceed through several steps in converting a WFF to clausal form.

1. Move all negation inward, so only atoms are negated.

We do this using the following rules, which you all remember from MACM 101.

2. Rename variables so that each quantifier has its own unique variable

associated with it.

3. Eliminate existential quantifiers ( s) by Skolemizing the WFF.
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4. Convert the WFF to prenex normal form. A WFF is in prenex normal form if

it consists of a string of quantifiers followed by a quantifier-free formula.

Since we have previously removed existential quantifiers and all possible

name conflicts, we can safely move all the remaining ( ) quantifiers to the left

without altering the meaning of the WFF.

5. Remove all quantifiers. Since all variables are now universally quantified, we

can make the quantification implicit.

6. Convert the WFF to conjunctive normal form using the following laws.

7. Rewrite the WFF as a list of clauses.
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1.4.3 Example

( ( ( )))
0. Get rid of the unofficial connective.

( ( ( )))
1. Move negation in as far as possible.

( ( ))
2. Rename variables to avoid duplication.

( ( ))
3. Skolemize.

( ( ))
4. Convert to prenex normal form.

(( ( )) )
5. Eliminate quantifiers.

( ( ))
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Last WFF from the previous page.

( ( ))
6. Convert to conjunctive normal form.

( ) ( )
( )

7. Finally, rewrite as a list of clauses.
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1.5 Resolution

Resolution is a rule of inference.

(Modus ponens)

(Syllogism)

(Resolution)
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In fact, the first two rules of inference are just special cases or resolution.

Since and , we can apply resolution to yield

.

Similarly, and so resolution yields

.

Usually resolution is applied to a pair of clauses, and , in a set of clauses

where the clause (set of literals) contains some literal, , such that

contains the negation, , of the literal. In this case, we say that the clauses,

and , resolve . The resolvent of these clauses is the clause produced by

taking the union of the literals in and excluding and . The resolvent is

added to the clause set.
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Quiz: What does the empty clause, that is the clause represented by the empty

set, , mean?
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A set of clauses is unsatisfiable if and only if the empty clause (which is false) can

be produced through resolution.

We can prove that a WFF is valid by proving that its negation is unsatisfiable.
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Let us consider an example. We will start by considering an axiom of the

propositional calculus.

( ) ( )

To prove that this axiom is valid, using resolution, we will prove that its negation is

unsatisfiable. We will also need to transform the negation to clausal form.
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(( ) ( ))
Definition of implication.

( ( ) ( ))
De Morgan’s laws.

( ( ) ( ))
Eliminate double negation.

( ) ( )
Definition of implication, twice.

( ) ( )
De Morgan’s laws.

( ) ( )
Eliminate double negation.

( ) ( )

Logic Programming F. Warren Burton 31



CMPT 383 Comparative Programming Languages Fall 2008

Last WFF from the previous page.

( ) ( )
Definition of implication, three times.

( ) ( )
De Morgan’s laws.

( ) ( )
Eliminate double negation.

( ) ( )
Getting rid of unneeded parentheses.

( )
Finally, rewrite as a list of clauses.
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We will now complete this proof using resolution, where the first four clauses are

from the previous page.

1.

2.

3.

4.

5. from 1 and 2.

6. from 3 and 5.

7. from 4 and 6.

The final clause shows that our negated axiom is unsatisfiable, so the axiom itself

is valid. Of course, the axiom is not required if resolution is a permitted rule of

inference.
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1.6 Unification

1.6.1 Substitution

Let be any term, be any var and be any clause. By we mean

the result of replacing every occurrence of in with .

If is a clause in a clause set , then so .

We will call the rule of inference that allows us to do this the particularization

rule .
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Suppose we are given the following axioms or assumptions in the form of a

collection of clauses.

add zero

add succ succ add

If we wish to show that there are values of and for which

add succ succ zero

is true, then we can do so by showing that

add succ succ zero

together with the two given clauses is unsatisfiable.

Note: The scope of a variable is a single clause. I could have used in place of

, for example, in the first clause above. To avoid confusion I am making all

variable names distinct.
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This gives us the following collection of clauses.

add zero

add succ succ add

add succ succ zero

In order to use resolution we need a pair of clauses such that one clause contains

some literal, , and the other clause contains the literal, . We don’t have this.

Furthermore, applying the particularization rule to a single clause will not give us

this condition.

However, we can use the particularization rule a total of three times on two literals.
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The collection of clauses from the previous page is:

add zero

add succ succ add

add succ succ zero

If we make the following substitutions to the first and third clauses

add zero succ zero

add succ succ zero zero zero

then the resulting clauses are

add zero succ zero succ zero

add zero succ zero succ zero

which by resolution give us the empty clause, which means false. Hence, the

clause set is unsatisfiable, so the original WFF,

add succ succ zero

is true for some values of and . Furthermore, the substitutions produce

suitable values for and .
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Remember that when we write a WFF in clausal form, all variables are implicitly

universally quantified. Hence,

add succ succ zero

is the same as of

add succ succ zero

which is the negation of

add succ succ zero

which is what we really wanted to show was true.

Logic Programming F. Warren Burton 38



CMPT 383 Comparative Programming Languages Fall 2008

What we have show to be unsatisfiable is the following set of clauses, with implicit

quantifiers given explicitly.

add zero

add succ succ add

add succ succ zero

or

add zero

add add succ succ

add succ succ zero

That is, for any add, zero and succ that satisfy the first two conditions, there

must be some values and such that add succ succ zero .

Logic Programming F. Warren Burton 39



CMPT 383 Comparative Programming Languages Fall 2008

Finding a substitution that makes two atoms the same is called unification and

the substitution is called a unifier .

We will write either

succ zero zero zero

or

succ zero zero zero

for the composition of the substitutions

succ zero , zero and zero .

A unifier for two atoms is a most general unifier if, for any other unifier ,

there exists a substitution such that . Hence, a most general unifier is

a “minimal” unifier, that changes as little as possible.
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For example, given the atoms and , is a

most general unifier. The substitution is another

unifier, since

In this case, where .

We note that the order of the components in a substitution is important.

On the other hand .

Finally, we note that is another most general unifier for

the two atoms considered above, so most general unifiers need not be unique.
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1.6.2 The Unification Algorithm

There is a simple algorithm to determine whether two atoms can be unified, and

to produce a most general unifier if unification is possible.

We assume that the algorithm is given copies of two atoms.

Recall that each variable is local to the clause in which it occurs. That is, for

example, the variable in one clause is different than the variable in another

clause. We will also assume that at the start of each unification step, no two

clauses have any variable name in common. It is always possible to make this so

by changing the names of variables.
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1. Initialize .

2. Compare the atoms from left to right (e.g. traverse the expression tree with a

preorder traversal) until a difference is found or the atoms are found to be

identical.

(a) If a difference is found in a place where one atom contains a variable, say

, and the other contains a term, , where does not contain , then

i. Replace with

ii. Apply the substitution to both atoms.

iii. Continue with the preorder traversal of the expression trees of the two

atoms as modified by the substitution.

(Note: The term may be just a different variable.)

(b) If any other difference is found, the unification fails.

(c) If no differences remain, then unification has succeeded and is the most

general unifier.
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1.7 Resolution Theorem Proving

A resolution theorem prover can be used to show that a collection of clauses is

unsatisfiable.

In normal use, we usually want to show that a particular consequence follows

from a set of assumptions.

We proceed by adding the negation of the consequence to our assumptions and

prove that the resulting set of clauses is unsatisfiable. That is, the negation of the

consequence cannot be true, so the original (unnegated) consequence must

follow from the assumptions, unless our assumptions are unsatisfiable.

As we have seen in an earlier example on page 37 of these notes, the

substitutions used when unifying atoms in clauses can produce useful information.
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A resolution theorem prover starts with a collection of clauses and repeatedly

adds new clauses to the set one at a time, using the particularization rule and

resolution, until the empty clause is generated.

The one remaining issue is the order in which new clauses are generated. This, in

fact, has been a major focus of research into automatic theorem proving.
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1.8 Horn Clauses

In general, some of the atoms in a clause will be negated and others will not be.

Consider a clause of the form

.

This may be written in nonclausal form as

.

A Horn clause is a clause that contains at most one atom that is not negated.

We will restrict our attention to Horn clauses that contain exactly one atom that is

not negated. (Some books define a Horn clause to have exactly, rather than at

most, one atom that is not negated.)
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In the above example, the clause is a Horn clause if .

We will write Horn clauses in the following form:

A special case of a Horn clause is when . In this case we will write

rather than
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2 Prolog

A Prolog program is a collection of Horn clauses.

For example, the following is a listing of the file nat.pl.

add(zero,W,W).

add(succ(X),Y,succ(Z)) :- add(X,Y,Z).

Remember that :- , , . means .

is called the head of the clause and , , is called the body .

A clause with only a head is called a fact and a clause with a body is called a

rule .

Important: Notice that every line ends with a period (.).
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2.1 Using Prolog on CSIL Linux Machines

6: burton_apple% pl

...
For help, use ?- help(Topic). or ?- apropos(Word).

?- [nat].

% nat compiled 0.00 sec, 580 bytes

Yes

?- add(U,succ(V),succ(zero)).

U = zero

V = zero
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2.2 Queries and Goals

A query , such as

?- add(U,succ(V),succ(zero)).

is entered interactively. This becomes an initial goal .

From the viewpoint of the predicate calculus, a query, , entered after the ?-

prompt, is the body of a clause without a head. That is, the query is the clause

.

With the implicit universal quantification, this is the WFF

. Prolog attempts to prove that together with the

current rules and facts is unsatisfiable.

Of course, is equivalent to

.
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With the example goal from the previous page, which was

?- add(U,succ(V),succ(zero)).

and the contents of nat.pl, Prolog determines that no const zero, fn

succ, and pred add can satisfy our negated goal as well as our rules and

facts. Prolog also finds specific values of U and V that violate the negated goal

U V add(U,succ(V),succ(zero))

These values of U and V will then satisfy the original (unnegated) goal.
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2.3 Search Straregy in Prolog

With resolution theorem proving, a major concern is the order in which new

clauses should be generated from existing clauses using resolution.

Prolog uses a depth first search with backtracking. Clauses are tried in order from

top to bottom, and the first clause with a head that can be unified with the current

goal is used. The predicates in the clause body are taken as new goals and are

considered from left to right. If each goal succeeds (from the Prolog viewpoint)

then the original query succeeds (from the Prolog viewpoint). If a goal cannot

succeed (from the Prolog viewpoint) then backtracking occurs and we try

selecting another clause at the last point where we had more than one possible

clause to choose from.
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2.4 Other Aspects of Prolog

You need a few other bits of information about Prolog in order to do much that is

useful.

A constant is either a number or what prolog calls an atom. A Prolog atom is

usually a word starting with a lower case letter. It is possible to have atoms that

start with upper case letters or other symbols if they are enclosed in single quotes.
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?- X = name.

X = name

Yes

?- X = ’name’.

X = name

Yes

?- X = ’Name’.

X = ’Name’

Yes
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Lists are somewhat similar to lists in Haskell.

In Prolog, [ ] and [1,2,3], for example, are lists of length zero and three.

If L is a list, then [X|L] is the list produced by inserting X at the start of L to

produce a new list, while leaving L unchanged.
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For example, with list.pl as follows

isEqualTo(X,X).

cons(X,Y,Z) :- isEqualTo([X|Y],Z).

we get

| ?- [list].

...
yes

| ?- cons(a,[2,3],X).

X = [a,2,3]

yes

| ?- cons([1,2,3],[4,5,6],X).

X = [[1,2,3],4,5,6]

yes

Logic Programming F. Warren Burton 56



CMPT 383 Comparative Programming Languages Fall 2008

Double quotes are used as a special syntax for a list of ascii character codes.

?- X = "Hello".

X = [72, 101, 108, 108, 111]

Beware of the following:

?- X = [’H’|"ello"].

X = [’H’, 101, 108, 108, 111]

Logic Programming F. Warren Burton 57



CMPT 383 Comparative Programming Languages Fall 2008

A useful web page, with lots of links, including some to tutorials, may be found at:

http://www.cetus-links.org/oo_prolog.html

The following also may be useful:

http://www.amzi.com/AdventureInProlog/advfrtop.htm
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I would like to thank Tai Meng for many corrections and suggestions for

improvements to these notes. Of course, the remaining errors are my fault.
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