DATA COMMUNICATON NETWORKING

Instructor: Textbook & Slides:

Ouldooz Baghban Karimi Computer Networking: A Top-Down Approach Kurose, Ross

Introduction

Course Overview

Basics of Computer Networks

- Internet & Protocol Stack
- Application Layer
- Transport Layer
- Network Layer
- Data Link Layer

Advanced Topics

- Case Studies of Computer Networks
- Internet Applications
- Network Management
- Network Security

Grading

Four Assignments: 20%

• Five Quizzes: 10%

• Midterm (Oct 12): 20%

• Final (Dec 5): 50%

Resources

Course textbook:

 Computer Networking, A top-down approach Kurose & Ross, Sixth Edition

Other recommended textbooks:

- Computer Networks: A Systems Approach Paterson & Davie, Fifth Edition
- TCP/IP Illustrated, Vol.1: The protocols Stevens
- Unix Network Programming, Vol.1: The Sockets Networking API Stevens

Office Hours

- Ouldooz Baghban Karimi:
 - Office Hours : Monday/Friday 9:30-10:20, Room 4046
 - Email: <u>oba2@cs.sfu.ca</u>
 - Email Policy : Reply only during office hours
- TA: Zahra Vaseqi
 - Office Hours : Tuesdays/Thursdays, Room 4046
 - Email: <u>zvaseqi@sfu.ca</u>
 - Email Policy : Reply only during office hours

Internet

Exciting Place

- Two billion users, five billion devices (2011)
- Infrastructure that provides services to numerous applications
 - Web, VoIP, email, games, e-commerce, social nets,...
- Provides programming interface to apps
 - Hooks that allow sending and receiving app programs to "connect" to Internet
 - Provides service options, analogous to postal service

Tense Place

- Cyber Attacks, Blocking,...
- Internet: "network of networks"
 - Access/core network
 - Interconnected Internet Service Providers (ISP)

Protocols

- TCP, IP, HTTP, 802.11,...
 - IETF (Internet Engineering Task Force)
 - RFC (Request For Comments)

Internet

wireless links

.

wired links

- Millions of connected computing devices:
 - hosts = end systems
 - running network apps

- Communication links
 - fiber, copper, radio, satellite
 - transmission rate: bandwidth

router

- Packet switches: forward packets (chunks of data)
 - routers and switches

Protocol

Human protocols

- Specific messages sent
- Specific actions taken when messages received, or other events

Network Protocols

- Machines rather than humans
- All communication activity in Internet governed by protocols

Protocol

Protocol

protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

Network Edge

End Systems

- Clients
- Servers

Access networks

- Wired
- Wireless
- Links

Access Networks

- Connect end systems to edge router
 - Residential access networks
 - DSL
 - Cable
 - Institutional access networks (Schools, Companies)
 - Wireless LAN
 - Ethernet
 - Mobile Access Networks

Digital Subscriber line (DSL)

Use existing telephone line (twisted pair copper wire) to central office DSLAM

- Telephone company acts as ISP
- Data over DSL phone line goes to Internet
- Voice over DSL phone line goes to telephone line
- Simultaneous data and voice
 - Frequency division multiplexing : 0-4kHz phone, 4-50kHz upstream, 50kHz-1MHz downstream
 - <2.5 Mbps (Typically < 1Mbps) upstream & <24 Mbps (Typically < 10Mbps) downstream transmission rate
 - Short distance (5-10 miles)

Introduction

Cable Network

- Different Channels in different bands
- HFC: Hybrid Fiber Coax
 - 500-5000 homes share access,
 - Homes connect with a coax cable to fiber cable
 - Fiber attaches homes to ISP router
 - unlike DSL which has dedicated access to central office
 - Asymmetric
 - Up to 42.8 Mbps (typical 30 Mbps) downstream transmission rate
 - Up to 30.7 Mbps (typical 2Mbps) Upstream transmission rate

Introduction

Home Network

Enterprise Access Networks (Ethernet)

- Companies, Universities,...
- 10Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- Today end systems typically connect into Ethernet switch

Wireless Access Networks

- Shared wireless access network connects end system to router
 - via base station (access point)
- Wireless LANs
 - Within building (100 ft)
 - 802.11b/g (WiFi): 11, 54 Mbps transmission rate

Wide-area wireless access

- Provided by cellular operator
- between 1 and 10 Mbps
- 3G, 4G, LTE

Links

Wired

- Twisted-pair copper wire
 - Two insulated copper wires
 - 10Mbps 10 Gbps
- Coaxial cable
 - Shared medium
- Fiber Optics
 - Light pulses each one bit
 - 100's Gbps: n x 51.8Mbps

Wireless

- Terrestrial Radio Channels
 - PAN, LAN, WAN
- Satellite Radio Channels
 - Geostationary
 - Low Earth Orbiting
 - Might be used for internet access in future

Network Core

- Mesh of Connected Routers
- Packet Switching
 - Hosts break application-layer messages into packets
 - Forward packets from one router to the next across links on path from source to destination
 - Each packet transmitted at full link capacity

Packet Switching: Store & Forward

Store & Forward

- Entire packet should arrive at router before it can be transmitted on next link
- Delay=L (Packet Length)/R (Transmission Rate, Capacity, Link Bandwidth)
 - Takes L/R seconds to transmit L-bit packet into link at R bps
 - Example: L=7.5Mbits, R=1.5Mpbs, one hop transmission delay = 5ms

Introduction

Packet Switching: Queue, Delay, Loss

Queuing & Loss

- If arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - Packets will queue, wait to be transmitted on link
 - Packets can be dropped (lost) if memory (buffer) fills up

Network Core: Routing vs. Forwarding

Routing

- Determines source-destination route taken by packets
- Routing Algorithms

Forwarding

 Move Packets from router's input to appropriate router output

Alternative Core: Circuit Switching

Reserved resources

- End to end resources allocated to, reserved for "call" between source and destination
- No sharing of reserved dedicated resources → Less Users
- Guaranteed Performance
- Idle circuit
 - Circuit segment idle if not used by the call
- Used in traditional telephone networks

Circuit Switching: TDM vs. FDM

Introduction

Packet switching vs. Circuit switching

Circuit Switching

- Share bandwidth among users
 - 10 users in the example

Packet Switching

- Sharing allows more users to use the network
 - 35 users in the example performs as good as circuit-switching – Why?
- Great for Bursty Data
- Simpler: No call set up

Example: I Mbps Link I 00kbps users when active Users active I 0% of the time

Packet switching vs. Circuit switching

Packet Switching Problems

- Excessive congestion possible
 - Delay
 - Loss
- Reliable Data Transfer and Congestion Control protocols needed

How to provide circuit like behavior?

- Bandwidth guarantees needed for audio/video applications
- Still an unsolved problem (We will discuss later)