
DATA COMMUNICATOIN

NETWORKING
Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach

 By: Kurose, Ross

Introduction

Transport Layer 2

Course Overview
 Basics of Computer Networks

 Internet & Protocol Stack

 Application Layer

 Transport Layer

 Network Layer

 Data Link Layer

 Advanced Topics

 Case Studies of Computer Networks

 Internet Applications

 Network Management

 Network Security

Transport Layer 3

Transport Layer
 Transport Layer Services

 Multiplexing & Demultiplexing

 UDP

 Reliable Data Transfer

 TCP

 Congestion Control

 TCP Congestion Control

Transport Layer 4

Transport Services & Protocols

 Logical communication between

application processes running on

different hosts

 Transport protocols run in end

systems

 Sender side: breaks application

messages into segments, passes to

network layer

 Receiver side: reassembles segments into

messages, passes to application layer

 More than one transport protocol

available to applications

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

5

Transport vs. Network Layer

 Network layer

 Logical communication between hosts

 Transport layer

 Logical communication between processes

 Relies on, enhances, network layer services

Transport Layer

6

Internet Transport Layer Protocols

 Reliable, in-order delivery: TCP

 Congestion control

 Flow control

 Connection setup

 Unreliable, unordered delivery: UDP

 No-frills extension of “best-effort” IP

 Services not available

 Delay guarantees

 Bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer

7

Multiplexing & Demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver: handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2 P1

transport

application

physical

link

network

P4
transport

application

physical

link

network

P3

Transport Layer

8

Demultiplexing

 Host receives IP datagrams

 Each datagram has source IP

address, destination IP address

 Each datagram carries one

transport-layer segment

 Each segment has source,

destination port number

 Host uses IP addresses & port

numbers to direct segment

to appropriate socket

source port # dest port #

32 bits

application
data
(payload)

other header fields

TCP/UDP segment format

Transport Layer

9

Demultiplexing

 Socket has host-local port #:

 DatagramSocket mySocket1

= new DatagramSocket(12534);

when host receives UDP segment:

 checks destination port # in

segment

 directs UDP segment to socket

with that port #

IP datagrams with same destination

port #, but different source IP

addresses and/or source port

numbers will be directed to same

socket at destination

Creating datagram to send into UDP
socket, must specify

 destination IP address

 destination port #

Transport Layer

10

Example
DatagramSocket serverSocket =

new DatagramSocket(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket (5775);

DatagramSocket
mySocket2 = new
DatagramSocket(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer

11

Connection Oriented Demultiplexing

 TCP socket identified by 4-tuple

 Source IP address

 Source port number

 Destination IP address

 Destination port number

 Demux

 Receiver uses all four values to direct segment to appropriate socket

 Server host may support many simultaneous TCP sockets

 Each socket identified by its own 4-tuple

 Web servers have different sockets for each connecting client

 non-persistent HTTP will have different socket for each request

Transport Layer

12

Connection Oriented Demux: Example

Transport Layer

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6 P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80 Three segments, all destined to IP address: B,

Dest port: 80 are demultiplexed to different sockets

server: IP
address B

13

Connection Oriented Demux: Example

Transport Layer

3-13

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

14

Connectionless Transport: UDP

 “Best effort” service
 Lost segments

 Delivered out-of-order to application

 Connectionless
 No handshaking between UDP sender & receiver

 Each UDP segment handled independently of others

 UDP Usage

 Multimedia Streaming applications

 DNS

 SNMP

 Reliable transfer over UDP

 Add reliability at application layer

 Application-specific error recovery!

Transport Layer

15

UDP: Segment Header

Transport Layer

source port # dest port #

32 bits

application
data
(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

Why There is a UDP?

No connection establishment (which can
add delay)

Simple: no connection state at sender,
receiver

Small header size

No congestion control: UDP can blast away
as fast as desired

16

UDP Checksum

Goal

 Detect “errors” (e.g., flipped bits) in transmitted segment

Sender
 Treat segment contents, including header fields, as sequence of 16-bit

integers

 Checksum: addition (one’s complement sum) of segment contents

 Sender puts checksum value into UDP checksum field

Receiver
 Compute checksum of received segment

 Check if computed checksum equals checksum field value:

 NO - error detected

 YES - no error detected. But maybe errors nonetheless? More later …

Transport Layer

17

Checksum Example

Transport Layer

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Add two 16-bit integers

18

Principles of Reliable Data Transfer
 Importance

 important in application, transport, link layers

 Top-10 list of important networking topics!
 Characteristics of unreliable channel will determine complexity of reliable data transfer protocol

(RDT)

Transport Layer

19

Reliable Data Transfer

Transport Layer

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

20

Reliable Data Transfer

Transport Layer

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Our Plan

 Incrementally develop sender, receiver sides of reliable data transfer protocol (rdt)

 Consider only unidirectional data transfer

 But control info will flow on both directions!

 Use finite state machines (FSM) to specify sender & receiver state, events and
actions

21

RDT 1.0

Transport Layer

Wait for

call from

above
packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

 Perfectly reliable underlying channel
 No bit errors

 No loss

 Separate FSMs for sender & receiver

