
DATA COMMUNICATOIN

NETWORKING
Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach

 By: Kurose, Ross

Introduction

Transport Layer 2

Course Overview
 Basics of Computer Networks

 Internet & Protocol Stack

 Application Layer

 Transport Layer

 Network Layer

 Data Link Layer

 Advanced Topics

 Case Studies of Computer Networks

 Internet Applications

 Network Management

 Network Security

Transport Layer 3

Transport Layer
 Transport Layer Services

 Multiplexing & Demultiplexing

 UDP

 Reliable Data Transfer

 TCP

 Congestion Control

 TCP Congestion Control

Transport Layer 4

Transport Services & Protocols

 Logical communication between

application processes running on

different hosts

 Transport protocols run in end

systems

 Sender side: breaks application

messages into segments, passes to

network layer

 Receiver side: reassembles segments into

messages, passes to application layer

 More than one transport protocol

available to applications

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

5

Transport vs. Network Layer

 Network layer

 Logical communication between hosts

 Transport layer

 Logical communication between processes

 Relies on, enhances, network layer services

Transport Layer

6

Internet Transport Layer Protocols

 Reliable, in-order delivery: TCP

 Congestion control

 Flow control

 Connection setup

 Unreliable, unordered delivery: UDP

 No-frills extension of “best-effort” IP

 Services not available

 Delay guarantees

 Bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer

7

Multiplexing & Demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver: handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2 P1

transport

application

physical

link

network

P4
transport

application

physical

link

network

P3

Transport Layer

8

Demultiplexing

 Host receives IP datagrams

 Each datagram has source IP

address, destination IP address

 Each datagram carries one

transport-layer segment

 Each segment has source,

destination port number

 Host uses IP addresses & port

numbers to direct segment

to appropriate socket

source port # dest port #

32 bits

application
data
(payload)

other header fields

TCP/UDP segment format

Transport Layer

9

Demultiplexing

 Socket has host-local port #:

 DatagramSocket mySocket1

= new DatagramSocket(12534);

when host receives UDP segment:

 checks destination port # in

segment

 directs UDP segment to socket

with that port #

IP datagrams with same destination

port #, but different source IP

addresses and/or source port

numbers will be directed to same

socket at destination

Creating datagram to send into UDP
socket, must specify

 destination IP address

 destination port #

Transport Layer

10

Example
DatagramSocket serverSocket =

new DatagramSocket(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket (5775);

DatagramSocket
mySocket2 = new
DatagramSocket(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer

11

Connection Oriented Demultiplexing

 TCP socket identified by 4-tuple

 Source IP address

 Source port number

 Destination IP address

 Destination port number

 Demux

 Receiver uses all four values to direct segment to appropriate socket

 Server host may support many simultaneous TCP sockets

 Each socket identified by its own 4-tuple

 Web servers have different sockets for each connecting client

 non-persistent HTTP will have different socket for each request

Transport Layer

12

Connection Oriented Demux: Example

Transport Layer

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6 P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80 Three segments, all destined to IP address: B,

Dest port: 80 are demultiplexed to different sockets

server: IP
address B

13

Connection Oriented Demux: Example

Transport Layer

3-13

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

14

Connectionless Transport: UDP

 “Best effort” service
 Lost segments

 Delivered out-of-order to application

 Connectionless
 No handshaking between UDP sender & receiver

 Each UDP segment handled independently of others

 UDP Usage

 Multimedia Streaming applications

 DNS

 SNMP

 Reliable transfer over UDP

 Add reliability at application layer

 Application-specific error recovery!

Transport Layer

15

UDP: Segment Header

Transport Layer

source port # dest port #

32 bits

application
data
(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

Why There is a UDP?

No connection establishment (which can
add delay)

Simple: no connection state at sender,
receiver

Small header size

No congestion control: UDP can blast away
as fast as desired

16

UDP Checksum

Goal

 Detect “errors” (e.g., flipped bits) in transmitted segment

Sender
 Treat segment contents, including header fields, as sequence of 16-bit

integers

 Checksum: addition (one’s complement sum) of segment contents

 Sender puts checksum value into UDP checksum field

Receiver
 Compute checksum of received segment

 Check if computed checksum equals checksum field value:

 NO - error detected

 YES - no error detected. But maybe errors nonetheless? More later …

Transport Layer

17

Checksum Example

Transport Layer

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Add two 16-bit integers

18

Principles of Reliable Data Transfer
 Importance

 important in application, transport, link layers

 Top-10 list of important networking topics!
 Characteristics of unreliable channel will determine complexity of reliable data transfer protocol

(RDT)

Transport Layer

19

Reliable Data Transfer

Transport Layer

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

20

Reliable Data Transfer

Transport Layer

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Our Plan

 Incrementally develop sender, receiver sides of reliable data transfer protocol (rdt)

 Consider only unidirectional data transfer

 But control info will flow on both directions!

 Use finite state machines (FSM) to specify sender & receiver state, events and
actions

21

RDT 1.0

Transport Layer

Wait for

call from

above
packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

 Perfectly reliable underlying channel
 No bit errors

 No loss

 Separate FSMs for sender & receiver

