DATA GOMMUNIGATOIN
NETWORKING

Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach
By: Kurose, Ross

Introduction

« Basics of Computer Networks
= Internet & Protocol Stack
« Application Layer
= Transport Layer
= Network Layer
« Data Link Layer

» Advanced Topics
» Case Studies of Computer Networks
» Internet Applications
« Network Management
» Network Security

Introduction 2

Goal: learn how to build client/server applications that communicate using sockets

Socket: door between application process and end-end-transport protocol

application

socket \

application

controlled by
app developer

controlled
by OS

' \

Internet

A
v

Introduction 3

« Two socket types for two transport services
- UDP: Unreliable datagram
= TCP: Reliable, byte stream-oriented

« Application Example

Client reads a line of characters (data) from its keyboard
and sends the data to the server.

= The server receives the data and converts characters to
uppercase.

= The server sends the modified data to the client.

» The client receives the modified data and displays the line
on its screen.

Introduction

= No connection between client and server
« No handshaking before sending data

« Sender explicitly attaches IP destination address
and Port # to each packet

« Receiver extracts sender IP address and port # from
received packets

= Lost or out of order data at the receiver

= UDP provides UNRELIABLE transfer of groups of bytes
(Datagrams) between client and server

Introduction 5

Glient/Server Socket Interaction: UDP

server (running on serverIP)

create socket, port= x:

serverSocket =
socket(AF _INET,SOCK_DGRAM)

read datagram from /

serverSocket

!

write reply to
serverSocket
specifying
client address,
port number

IS

—)

client

create socket:

clientSocket =
socket(AF_INET,SOCK_DGRAM)

!

Create datagram with server IP and
port=X; send datagram via
clientSocket

read datagram from
clientSocket

!

close
clientSocket

Introduction

Python UDPClient
include Python’s socket

library » from socket import *
serverName = ‘hostname’
serverPort = 12000
create UDP socket for—» ClientSocket = socket(socket. AF_INET,

2 socket.SOCK_DGRAM)
get user keyboard _ =5
input > message = raw_input(’Input lowercase sentence:’)

Attach server name, portto__ cliantSocket.sendto(message,(serverName, serverPort))
message; send into socket

read reply characters from —» modifiedMessage, serverAddress =

socket into string :
clientSocket.recvfrom(2048)

print out received string —— print modifiedMessage

and close socket 3
clientSocket.close()

Introduction 2

Python UDPServer

from socket import *
serverPort = 12000

create UDP socket — serverSocket = socket(AF_INET, SOCK_DGRAM)
bind socket to local port - "
ety iy, sgrve:Socket.bmc!((; serverPort)?
print “The server is ready to receive”
loop forever » while 1:
Read from UDP socketinto | message, clientAddress = serverSocket.recvfrom(2048)
message, getting client’s = e
address (client IP and port) modifiedMessage = message.upper()

send upper case string —— SeérverSocket.sendto(modifiedMessage, clientAddress)
back to this client

Introduction 8

socket Programming with TGP

= Client must contact server
= Server process must first be running
= Server must have created socket (door) that welcomes client’s contact

= Client contacts server by:
Creating TCP socket, specifying IP address, port number of server process
When client creates socket: client TCP establishes connection to server TCP

= Server

= When contacted by client, server TCP creates new socket for server
process to communicate with that particular client

= allows server to talk with multiple clients
= source port numbers used to distinguish clients (more in Chap 3)

= Application Viewpoint:
= TCP provides reliable, in-order byte-stream transfer (Y“pipe”) between
client and server

Introduction 9

Client/Server Socket Interaction: TGP

server (running on hostid)

create socket,

port=x, for incoming
request:

serverSocket = socket()

wait for incoming

connection reqUest €= = = ‘= = = —
connectionSocket = CONNection setup

serverSocket.accept()

create soc
= connect to

»

client

ket,
hostid, port=x

clientSocket = socket()

A 4
send request using

read request from / clientSocket

connectionSocket

write reply to —_— l

connectionSocket — read reply from
1 clientSocket

close

connectionSocket Close v

clientSocket

Introduction

Example App: TGP Client

Python TCPClient

from socket import *
serverName = 'servername’

create TCP socket for serverPort = 12000

server, remote port 12000 | clientSocket = socket(AF _INET(SOCK_STREAM
cIientSocket.connect((serverNaW
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)

Noneedto attachserver_____, modifiedSentence = clientSocket.recv(1024)

name, port : S
print ‘From Server:’, modifiedSentence
clientSocket.close()

Introduction 11

Example App: TGP Server

Python TCPServer

from socket import *
serverPort = 12000

create TCP welcoming

socket » serverSocket = socket(AF_INET,SOCK_STREAM)
- serverSocket.bind((",serverPort))
Server negins listening ror .
neoming TOP requesis——" ServerSocket.listen(1)
print “The server is ready to receive’
loop forever . while 1:

server waits on accept() - s
s connectionSocket, addr = serverSocket.accept()

socket created on return

»sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)

close connection to this client — connectionSocket.cIose()
(but not welcoming socket)

read bytes from socket
(but not address as in UDP)

Introduction 12

Application Layer

- Application Architectures
= ~F2R
» Client-Server

« Application Service Requirements
= Reliability
» Bandwidth
= Delay

« Specific Protocols
- HTTP
- FIP
= SMTP, POP, IMAP
= DNS
= P2P: BitTorrent, DHT

- Socket Programming

Introduction 13

- Control/data Messages
In-band
Out-of-band

= State
Stateless
Stateful

= Reliability
Reliable
Unreliable

« Implementation
Centralized
Distributed

= Message Exchange
Format
Header
Data
Client/Server

Introduction

