
DATA COMMUNICATOIN

NETWORKING
Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach

 By: Kurose, Ross

Introduction

Introduction 2

Course Overview
 Basics of Computer Networks

 Internet & Protocol Stack

 Application Layer

 Transport Layer

 Network Layer

 Data Link Layer

 Advanced Topics

 Case Studies of Computer Networks

 Internet Applications

 Network Management

 Network Security

Introduction 3

Socket Programming

Goal: learn how to build client/server applications that communicate using sockets

Socket: door between application process and end-end-transport protocol

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Introduction 4

Socket Programming
 Two socket types for two transport services

 UDP: Unreliable datagram
 TCP: Reliable, byte stream-oriented

 Application Example

 Client reads a line of characters (data) from its keyboard
and sends the data to the server.

 The server receives the data and converts characters to
uppercase.

 The server sends the modified data to the client.

 The client receives the modified data and displays the line
on its screen.

Introduction 5

Socket Programming with UDP
 No connection between client and server

 No handshaking before sending data

 Sender explicitly attaches IP destination address
and Port # to each packet

 Receiver extracts sender IP address and port # from
received packets

 Lost or out of order data at the receiver
 UDP provides UNRELIABLE transfer of groups of bytes

(Datagrams) between client and server

Introduction 6

Client/Server Socket Interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

 clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =

socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

server (running on serverIP) client

Introduction 7

Example App: UDP Client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(socket.AF_INET,

 socket.SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =

 clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for

server

get user keyboard
input

Attach server name, port to

message; send into socket

print out received string

and close socket

read reply characters from

socket into string

Introduction 8

Example App: UDP Server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print “The server is ready to receive”

while 1:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.upper()

 serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port

number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string

back to this client

Introduction 9

Socket Programming with TCP
 Client must contact server

 Server process must first be running

 Server must have created socket (door) that welcomes client’s contact

 Client contacts server by:

 Creating TCP socket, specifying IP address, port number of server process

 When client creates socket: client TCP establishes connection to server TCP

 Server
 When contacted by client, server TCP creates new socket for server

process to communicate with that particular client

 allows server to talk with multiple clients

 source port numbers used to distinguish clients (more in Chap 3)

 Application Viewpoint:
 TCP provides reliable, in-order byte-stream transfer (“pipe”) between

client and server

Introduction 10

Client/Server Socket Interaction: TCP

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocket read request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Introduction 11

Example App: TCP Client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

Python TCPClient

create TCP socket for

server, remote port 12000

No need to attach server

name, port

Introduction 12

Example App: TCP Server

 from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while 1:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence)

 connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket

(but not address as in UDP)

close connection to this client

(but not welcoming socket)

Introduction 13

Application Layer
 Application Architectures

 P2P

 Client-Server

 Application Service Requirements

 Reliability

 Bandwidth

 Delay

 Specific Protocols
 HTTP

 FTP

 SMTP, POP, IMAP

 DNS

 P2P: BitTorrent, DHT

 Socket Programming

Introduction 14

Protocols
 Control/data Messages

 In-band

 Out-of-band

 State
 Stateless

 Stateful

 Reliability
 Reliable

 Unreliable

 Implementation
 Centralized

 Distributed

 Message Exchange
 Format

 Header
 Data

 Client/Server

