DATA COMMUNICATON NETWORKING

Instructor: Ouldooz Baghban Karimi Course Book: Computer Networking, A Top-Down Approach By: Kurose, Ross

Introduction

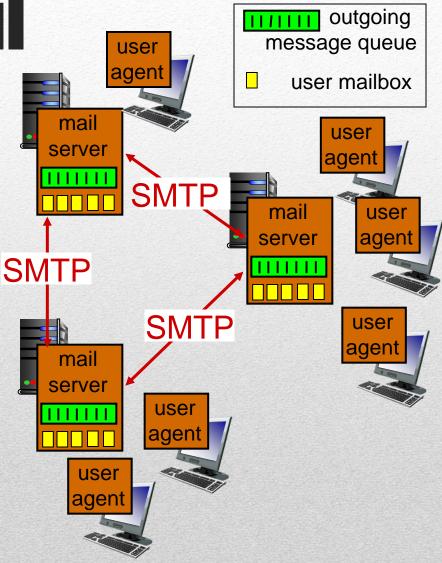
Course Overview

Basics of Computer Networks

- Internet & Protocol Stack
- Application Layer
- Transport Layer
- Network Layer
- Data Link Layer

Advanced Topics

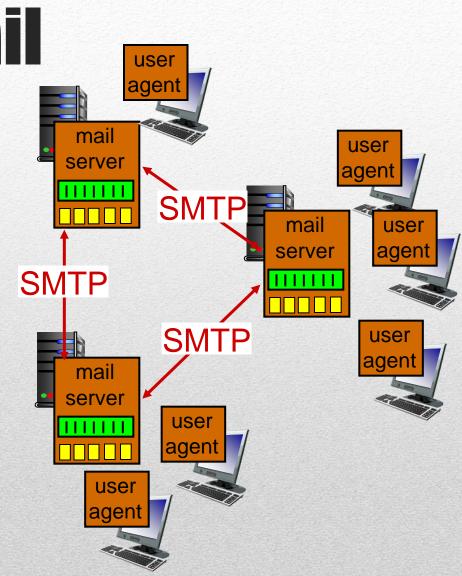
- Case Studies of Computer Networks
- Internet Applications
- Network Management
- Network Security


Electronic Mail

Three major components

- User agents
- Mail servers
- Simple mail transfer protocol: SMTP

User Agent

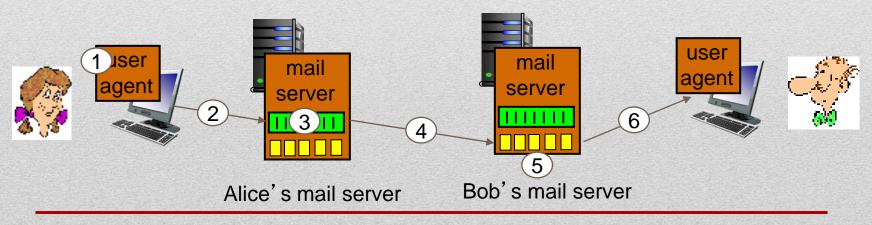

- "mail reader"
 - Outlook, Thunderbird, iPhone mail client
- Composing, editing, reading mail messages
- Outgoing, incoming messages stored on server

Electronic Mail

Mail Servers

- Mailbox contains incoming messages for user
- Message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - Client: sending mail server
 - "server": receiving mail server

Electronic Mail: SMTP (RFC 2821)


- Uses TCP to reliably transfer email message from client to server, port 25
- Direct transfer: sending server to receiving server
- Three phases of transfer
 - Handshaking (greeting)
 - Transfer of messages
 - Closure
- Command/response interaction (like HTTP, FTP)
 - Commands: ASCII text
 - Response: status code and phrase
- Messages must be in 7-bit ASCI

Alice Sends Messages to Bob

2) Alice's UA sends message to her mail server; message placed in message queue

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox

- 3) client side of SMTP opens TCP connection with Bob's mail server
- 6) Bob invokes his user agent to read message

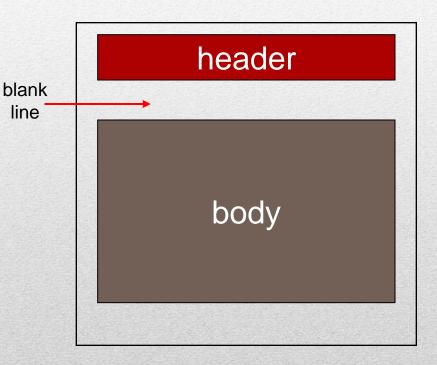
Sample SMTP Interaction

- S: 220 hamburger.edu
- C: HELO crepes.fr
- S: 250 Hello crepes.fr, pleased to meet you
- C: MAIL FROM: <alice@crepes.fr>
- S: 250 alice@crepes.fr... Sender ok
- C: RCPT TO: <bob@hamburger.edu>
- S: 250 bob@hamburger.edu ... Recipient ok
- C: DATA
- S: 354 Enter mail, end with "." on a line by itself
- C: Do you like ketchup?
- C: How about pickles?
- C: .
- S: 250 Message accepted for delivery
- C: QUIT
- S: 221 hamburger.edu closing connection

SMTP

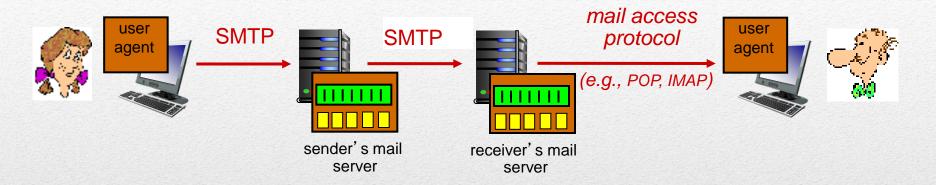
- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCII
- SMTP server uses CRLF.CRLF to determine end of message

Comparison with HTTP


- HTTP: pull
- SMTP: push
- Both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own response msg
- SMTP: multiple objects sent in multipart msg

Mail Message Format

- SMTP: protocol for exchanging email messages
- **RFC 822:** standard for text message format:
 - header lines
 - To
 - From:
 - Subject:


Different from SMTP MAIL FROM, RCPT TO: commands!

- Body: the "message"
 - ASCII characters only

Introduction

Mail Access Protocols

- SMTP: delivery/storage to receiver's server
- Mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored mesasges on server
 - HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 Protocol

Authorization phase

- client commands:
 - user: declare username
 - pass: password
- server responses
 - +OK
 - -ERR

Transaction phase

- client:
 - list: list message numbers
 - retr: retrieve message by number
 - dele: delete
 - quit

- S: +OK POP3 server ready
- C: user bob
- S: +OK
- C: pass hungry
- S: +OK user successfully logged on
- C: list
- S: 1 498
- S: 2 912
- S: .
- C: retr 1
- S: <message 1 contents>
- S: .
- C: dele 1
- C: retr 2
- S: <message 1 contents>
- S: .
- C: dele 2
- C: quit
- S: +OK POP3 server signing off

POP3 & IMAP

POP3

- Previous example uses POP3 "download and delete" mode
 - Bob cannot re-read e-mail if he changes client
- POP3 "download-and-keep": copies of messages on different clients
- POP3 is stateless across sessions

IMAP

- Keeps all messages in one place: at server
- Allows user to organize messages in folders
- Keeps user state across sessions:
 - Names of folders and mappings between message IDs and folder name

DNS: Domain Name System

- People identifiers
 - SIN
 - Name
 - Passport Number

Internet hosts and router

- IP address (32 bit) used for addressing datagrams
- "name", e.g., www.yahoo.com used by humans

How to map between IP address and name?

DNS: Domain Name System

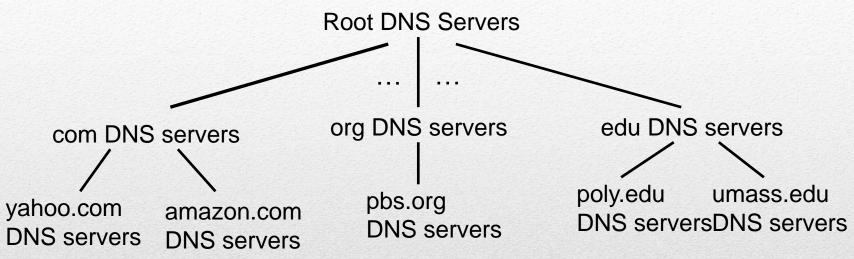
Distributed Database

Implemented in hierarchy of many name servers

Application Layer Protocol

- Host and name servers communicate to resolve names
 - Address/name translation
 - Core internet function implemented as application layer protocol
 - Complexity at network edge

DNS: Domain Name System


DNS Services

- Hostname to IP address translation
- Host aliasing
 - Canonical, alias names
- Mail server aliasing
- Load distribution
 - Replicated web servers: Many IP addresses correspond to one name

• Why not Centralize DNS?

- Single point of failure
- Traffic Volume
- Distance Centralized Database
- Maintenance
- Scalability

DNS: A Distributed Hierarchical Database

Client wants IP for <u>www.avazon.com</u>

- Client queries root server to find com DNS server
- Client queries .com DNS server to get amazon.com DNS server
- Client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: Root Name Servers

Contacted by local name server that can not resolve name

Root name server

- Contacts authoritative name server if name mapping not known
- Gets mapping
- Returns mapping to local name server
- 13 Root Name Servers Worldwide

TLD & Authoritative Servers

Top-level domain (TLD) servers

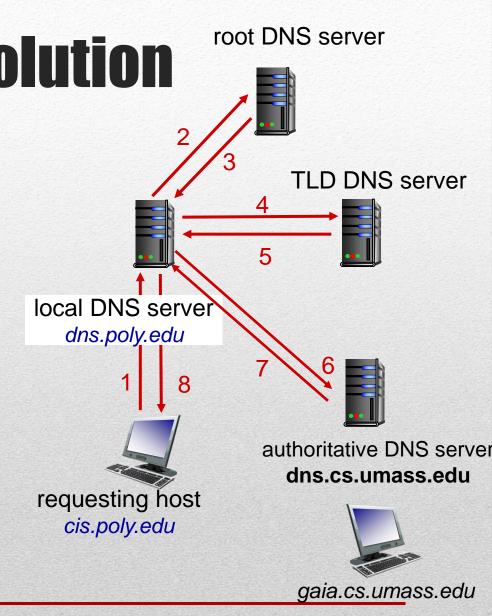
- Responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

Authoritative DNS servers

- Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- Can be maintained by organization or service provider

Local DNS Name Server

- Does not strictly belong to hierarchy
- Each ISP (residential ISP, company, university) has one
 - Also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - Has local cache of recent name-to-address translation pairs (but may be out of date!)
 - Acts as proxy, forwards query into hierarchy

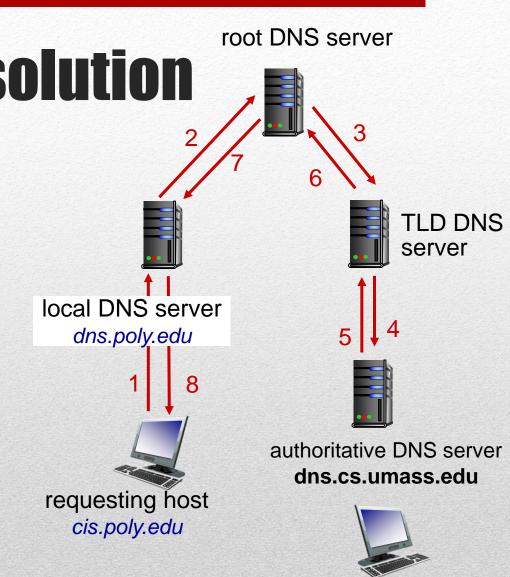

DNS Name Resolution

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Iterated Query

Contacted server replies with name of server to contact

"I don' t know this name, but ask this server"



DNS Name Resolution

Recursive Query

Puts burden of name resolution on contacted name server

Heavy load at upper levels of hierarchy?

gaia.cs.umass.edu

Introduction

DNS: Caching & Updating Records

- Once (any) name server learns mapping, it caches mapping
 - Cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- Cached entries may be out-of-date (best effort nameto-address translation!)
 - If name host changes IP address, may not be known Internet-wide until all TTLs expire
- Update/notify mechanisms proposed IETF standard
 - RFC 2136

DNS Records

DNS: Distributed DB storing resource records (RR)

RR format: (name, value, type, ttl)

Type=A

- name is hostname
- value is IP address

Type=MX

 value is name of mailserver associated with name

Type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

Type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

DNS Protocol & Messages

Query and reply messages, both with same message format

Message header

- Identification
 - 16 bit # for query, reply to query uses same #

Flags

- query or reply
- recursion desired
- recursion available
- reply is authoritative

← 2 bytes → ← 2 bytes →				
	identification	flags		
	# questions	# answer RRs		
	# authority RRs	# additional RRs		
	questions (variab	uestions (variable # of questions)		
	answers (variable # of RRs)			
Section 1	authority (variable # of RRs)			

2 hytor _____ 2 hytor

additional info (variable # of RRs)

Introduction

DNS Protocol & Messages

	← 2 bytes → ← 2 bytes →		
	identification	flags	
	# questions	# answer RRs	
	# authority RRs	# additional RRs	
name, type fields for a query	 questions (variable # of questions) answers (variable # of RRs) authority (variable # of RRs) 		
RRs in response to query			
records for authoritative servers			
additional "helpful" info that may be used	 additional info (variable # of RRs) 		

Inserting Records into DNS

- Example: new startup "Network Utopia"
- Register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - Provide names, IP addresses of authoritative name server (primary and secondary)
 - Registrar inserts two RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
- Create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com