
DATA COMMUNICATOIN

NETWORKING
Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach

 By: Kurose, Ross

Introduction

Introduction 2

Course Overview
 Basics of Computer Networks

 Internet & Protocol Stack

 Application Layer

 Transport Layer

 Network Layer

 Data Link Layer

 Advanced Topics

 Case Studies of Computer Networks

 Internet Applications

 Network Management

 Network Security

Introduction 3

User-Server State: Cookies

 Four Components

 Cookie header line of HTTP response

 Cookie header line in next HTTP request message

 Back-end database at Web site

 Cookie file kept on user’s host, managed by user’s

browser

Introduction

4

Cookies
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg

Amazon server

creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database

Introduction 5

Cookies Usage

 Usage
 Authorization

 Shopping Carts

 Recommendations

 User session state (Web email)

 Keeping State
 protocol endpoints: maintain state at sender/receiver over multiple

transactions

 cookies: http messages carry state

cookies and privacy

cookies permit sites to learn a lot

about you

you may supply name and e-mail to
sites

Introduction 6

Web Caches (Proxy Server)

 User sets browser
 Web accesses via

cache

 Browser sends all HTTP
requests to cache

 Object in cache

 cache returns
object

 Else cache requests
object from origin
server, then returns
object to client

client

proxy

server

client origin

server

origin

server

Goal: satisfy client request without involving origin server

Introduction 7

Web Catching
 Cache acts as both client and server

 server for original requesting client

 client to origin server

 Typically cache is installed by ISP
 university, company, residential ISP

 Why Web Catching?
 Reduce response time for client request

 Reduce traffic on an institution’s access link

 Internet dense with caches: enables “poor” content providers to

effectively deliver content (so too does P2P file sharing)

Introduction 8

Web Catching Example

origin

servers

public

 Internet

institutional

network

1 Gbps LAN

1.54 Mbps

access link

 Example
 Average object size:

100kbits

 Average request rate from
browser to origin servers:
15/sec

 Average Data rate to
Browsers: 1.50Mbps

 RTT from institutional router
to any high origin server:
2sec

 Access link rate: 1.54Mbps

Introduction 9

Web Catching Example
 Example

 LAN utilization: 15%
 Access link utilization = 99%
 Total delay = Internet delay + access delay + LAN delay

 = 2 sec + minutes + usecs

 Increase access link speed to 154Mbps
 LAN utilization: 15%
 Access link utilization = 9.9%
 Total delay = Internet delay + access delay + LAN delay

 = 2 sec + msecs + usecs

 Cache with hit rate 0.4
 Access link utilization:

 60% of requests use access link

 Data rate to browsers over access link = 0.6*1.50 Mbps = .9 Mbps

 Utilization = 0.9/1.54 = 0.58

 Total delay

 = 0.6 * (delay from origin servers) +0.4 * (delay when satisfied at cache) = 0.6 (~2.01) +
0.4 (~msecs) = ~ 1.2 secs

 less than with 154 Mbps link (and cheaper too!)

Introduction 10

Conditional GET
 Goal: don’t send object

if cache has up-to-date
cached version
 no object transmission

delay

 lower link utilization

 Cache: specify date of
cached copy in HTTP
request
 If-modified-since: <date>

 Server: response
contains no object if
cached copy is up-to-
date:
 HTTP/1.0 304 Not

Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

before

<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

after

<date>

client server

Introduction 11

FTP: File Transfer Protocol

 Transfer to/from remote host

 Client/server model
 Client: side that initiates transfer (either to/from remote)
 Server: remote host

 ftp: RFC 959
 ftp server: port 21

file transfer
FTP

server

FTP

user

interface

FTP

client

local file

system

remote file

system

user

at host

Introduction 12

FTP: Separate Control & Data
 FTP client contacts FTP server

at port 21, using TCP

 Client authorized over control
connection

 Client browses remote
directory, sends commands
over control connection

 When server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

 After transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 Server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains “state”:
current directory, earlier
authentication

Introduction 13

FTP: Commands & Responses
sample commands:

 sent as ASCII text over control
channel

 USER username

 PASS password

 LIST return list of file in current
directory

 RETR filename retrieves (gets)
file

 STOR filename stores (puts) file
onto remote host

sample return codes:

 status code and phrase (as in HTTP)

 331 Username OK, password

required

 125 data connection already

open; transfer starting

 425 Can’t open data

connection

 452 Error writing file

