
DATA COMMUNICATOIN

NETWORKING
Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach

 By: Kurose, Ross

Introduction

Introduction 2

Course Overview
 Basics of Computer Networks

 Internet & Protocol Stack

 Application Layer

 Transport Layer

 Network Layer

 Data Link Layer

 Advanced Topics

 Case Studies of Computer Networks

 Internet Applications

 Network Management

 Network Security

Introduction 3

User-Server State: Cookies

 Four Components

 Cookie header line of HTTP response

 Cookie header line in next HTTP request message

 Back-end database at Web site

 Cookie file kept on user’s host, managed by user’s

browser

Introduction

4

Cookies
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg

Amazon server

creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database

Introduction 5

Cookies Usage

 Usage
 Authorization

 Shopping Carts

 Recommendations

 User session state (Web email)

 Keeping State
 protocol endpoints: maintain state at sender/receiver over multiple

transactions

 cookies: http messages carry state

cookies and privacy

cookies permit sites to learn a lot

about you

you may supply name and e-mail to
sites

Introduction 6

Web Caches (Proxy Server)

 User sets browser
 Web accesses via

cache

 Browser sends all HTTP
requests to cache

 Object in cache

 cache returns
object

 Else cache requests
object from origin
server, then returns
object to client

client

proxy

server

client origin

server

origin

server

Goal: satisfy client request without involving origin server

Introduction 7

Web Catching
 Cache acts as both client and server

 server for original requesting client

 client to origin server

 Typically cache is installed by ISP
 university, company, residential ISP

 Why Web Catching?
 Reduce response time for client request

 Reduce traffic on an institution’s access link

 Internet dense with caches: enables “poor” content providers to

effectively deliver content (so too does P2P file sharing)

Introduction 8

Web Catching Example

origin

servers

public

 Internet

institutional

network

1 Gbps LAN

1.54 Mbps

access link

 Example
 Average object size:

100kbits

 Average request rate from
browser to origin servers:
15/sec

 Average Data rate to
Browsers: 1.50Mbps

 RTT from institutional router
to any high origin server:
2sec

 Access link rate: 1.54Mbps

Introduction 9

Web Catching Example
 Example

 LAN utilization: 15%
 Access link utilization = 99%
 Total delay = Internet delay + access delay + LAN delay

 = 2 sec + minutes + usecs

 Increase access link speed to 154Mbps
 LAN utilization: 15%
 Access link utilization = 9.9%
 Total delay = Internet delay + access delay + LAN delay

 = 2 sec + msecs + usecs

 Cache with hit rate 0.4
 Access link utilization:

 60% of requests use access link

 Data rate to browsers over access link = 0.6*1.50 Mbps = .9 Mbps

 Utilization = 0.9/1.54 = 0.58

 Total delay

 = 0.6 * (delay from origin servers) +0.4 * (delay when satisfied at cache) = 0.6 (~2.01) +
0.4 (~msecs) = ~ 1.2 secs

 less than with 154 Mbps link (and cheaper too!)

Introduction 10

Conditional GET
 Goal: don’t send object

if cache has up-to-date
cached version
 no object transmission

delay

 lower link utilization

 Cache: specify date of
cached copy in HTTP
request
 If-modified-since: <date>

 Server: response
contains no object if
cached copy is up-to-
date:
 HTTP/1.0 304 Not

Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

before

<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

after

<date>

client server

Introduction 11

FTP: File Transfer Protocol

 Transfer to/from remote host

 Client/server model
 Client: side that initiates transfer (either to/from remote)
 Server: remote host

 ftp: RFC 959
 ftp server: port 21

file transfer
FTP

server

FTP

user

interface

FTP

client

local file

system

remote file

system

user

at host

Introduction 12

FTP: Separate Control & Data
 FTP client contacts FTP server

at port 21, using TCP

 Client authorized over control
connection

 Client browses remote
directory, sends commands
over control connection

 When server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

 After transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 Server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains “state”:
current directory, earlier
authentication

Introduction 13

FTP: Commands & Responses
sample commands:

 sent as ASCII text over control
channel

 USER username

 PASS password

 LIST return list of file in current
directory

 RETR filename retrieves (gets)
file

 STOR filename stores (puts) file
onto remote host

sample return codes:

 status code and phrase (as in HTTP)

 331 Username OK, password

required

 125 data connection already

open; transfer starting

 425 Can’t open data

connection

 452 Error writing file

