
DATA COMMUNICATOIN

NETWORKING
Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach

 By: Kurose, Ross

Introduction

Introduction 2

Course Overview
 Basics of Computer Networks

 Internet & Protocol Stack

 Application Layer

 Transport Layer

 Network Layer

 Data Link Layer

 Advanced Topics

 Case Studies of Computer Networks

 Internet Applications

 Network Management

 Network Security

Introduction 3

Application Layer
 Conceptual & implementation aspects of network application

protocols

 Client-Server

 Peer to Peer

 Applications & application level protocols

 HTTP

 FTP

 SMTP/POP3/IMAP

 DNS

 Create Network Applications

 Socket API

Introduction 4

Creating a Network Application

 Programs run on end systems

 Network core devices do not run user

applications

 Communication over network

 Application Architectures

 Peer to peer

 Client-Server

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Introduction 5

Client-Server Structure

 Server

 Permanent IP address

 Always on host

 Data centers for scaling

 Client

 Communicate with server

 May be intermittently
connected

 May have dynamic IP addresses

 Do not communicate directly

with each other

client/server

Introduction 6

Peer to Peer Architecture
 Arbitrary end systems

 Direct communication

 Peers request service from
each other and provide service

to each other in return

 Self scalability

 Every new peer, a new service
capacity

 New service

 New demand

 Intermitted connection of peers

 Changed IP addresses

 Complex management

peer-peer

Introduction 7

Process Communication
 Process

 Program running within an end
host

 Process Communication

 Within the same host

 Inter-process communication

 Defined by OS

 Unication

 Defined by OS

 In different hosts

 Exchanging messages

 P2P applications have client and
server processes as well

client process: process that

initiates communication

server process: process that

waits to be contacted

Introduction 8

Sockets
 Process send/receive messages to/from their sockets

 Sending process relies on transport infrastructure on

other side of door to deliver message to socket at

receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Introduction 9

Addressing Processes

 IP Address of the host – Enough?

 IP address

 Port numbers associated with the process

 Example

 HTTP: 80

 Mail Server: 25

 Example: HTTP message to gaia.cs.umass.edu

 IP address: 128.119.245.12

 Port number: 80

Introduction 10

Application Layer Protocol
 Defines

 Types of messages
exchanged

 e.g. request, response

 Message Syntax

 Fields in the message and
their values

 Message Semantics

 Meaning of the information
in the fields

 Rules for when and how to
send and receive messages

 Open protocols:

 defined in RFCs

 allows for

interoperability

 e.g., HTTP, SMTP

 Proprietary protocols:

 e.g., Skype

Introduction 11

Transport Service Requirements
 Data Integrity

 Reliable transfer (FTP)

 Loss tolerant applications (Multimedia)

 Timing
 Low delay

 Online gaming

 VoIP

 Throughput
 Elastic

 Inelastic: Multimedia

 Security

application

file transfer

e-mail

Web documents

real-time

audio/video

stored audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

time sensitive

no

no

no

yes, 100’s

msec

yes, few secs

yes, 100’s msec

yes and no

Transport Service Requirements

Introduction 12

Introduction 13

Internet Transport Protocol Services

 TCP
 Reliable transport
 Flow control
 Congestion Control

 Connection Oriented
 Does not Provide

 Timing
 Minimum throughput
 Guarantees for security

 UDP
 Unreliable data transfer
 Does not provide

 Timing
 Minimum throughput
 Security
 Congestion Control
 Flow Control Why do we need UDP?

Introduction 14

Internet Transport Protocol Services

application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (e.g., YouTube),

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP

Introduction 15

Securing TCP

 TCP & UDP
 No encryption

 Cleartext passwords sent into socket traverse internet
in cleartext

 Guarantees for security

 SSL
 Provides encrypted TCP connection
 Data integrity

 End-point authentication

 SSL Socket API
 Apps use SSL libraries which talk to TCP

 Cleartext passwords sent into socket traverse Internet
encrypted

Introduction 16

Web & HTTP
 Web Page

 Consists of objects
 HTML file

 JPEG image

 Audio file

 Base HTML file which includes several referenced
objects
 Each object is addressable by a URL

www.someschool.edu/someDept/pic.gif

host name path name

Introduction 17

HTTP: HyperText Transfer Protocol

 Application layer

protocol

 Client-server model

 Client: browser that
requests, receives and

displays the Web objects

 Server: Web server sends

objects in response to

requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

Introduction 18

HTTP Connections

 Uses TCP

 Client initiates TCP
connection (creates
socket) to server, port 80

 Server accepts TCP
connection from client

 HTTP messages
(application layer
messages) exchanged
between browser (HTTP
Client) & web serer

 TCP Connection Closed

HTTP is “stateless”
server maintains no

information about past
client requests

protocols that maintain “state”
are complex!

past history (state) must be

maintained

if server/client crashes, their views

of “state” may be inconsistent,
must be reconciled

Introduction 19

HTTP Connections

 Non persistent HTTP

 At most one object sent over TCP connection

 After than connection is closed

 Downloading multiple objects requires multiple

connections

 Persistent HTTP

 Multiple objects can be sent over single TCP

connection between client and server

Introduction 20

Non-persistent HTTP

1a. HTTP client initiates TCP connection to

HTTP server (process) at

www.someSchool.edu on port 80

2. HTTP client sends HTTP request

message (containing URL) into TCP

connection socket. Message

indicates that client wants object

someDepartment/home.index

1b. HTTP server at host

www.someSchool.edu waiting for

TCP connection at port 80.

“accepts” connection, notifying

client

3. HTTP server receives request

message, forms response message

containing requested object, and

sends message into its socket

www.someSchool.edu/someDepartment/home.index

suppose user enters URL: (contains text, references to 10 jpeg images)

Introduction 21

Non-persistent HTTP

5. HTTP client receives response

message containing html file,

displays html. Parsing html file, finds

10 referenced jpeg objects

6. Steps 1-5 repeated for

each of 10 jpeg objects

4. HTTP server closes TCP

connection.

Introduction 22

Non Persistent HTTP: Response Time

 RTT
 Round Trip Time

 Time for a packet to travel
from client to server and back

 HTTP Response Time:

 1RTT: initiate TCP connection

 1 RTT: GTTP request & first few
bytes of HTTP response to
return file transmission time

 Non persistent HTTP response

time =
 2RTT+file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Introduction 23

Persistent HTTP

 Non persistent HTTP problems
 Requires 2 RTT per object

 OS overhead for each TCP connection

 Browsers often open parallel TCP connections to fetch referenced objects

 Persistent HTTP

 Server leaves connection open after sending response

 Subsequent HTTP messages between same client-server sent over open
connections

 Client sends requests as soon as it encounters a referenced object

 As little as one RTT for all the referenced objects

Introduction 24

HTTP Request Message

request line

(GET, POST,

HEAD commands)

header

 lines

carriage return,

line feed at start

of line indicates

end of header lines

carriage return character

line-feed character

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

Introduction 25

HTTP Request Message: General Format
request
line

header
lines

body

method sp sp cr lf version URL

cr lf value header field name

cr lf value header field name

~ ~ ~ ~

cr lf

entity body ~ ~ ~ ~

Introduction 26

Uploading From Input

 POST method

 Web page often includes form input

 Input is uploaded to server in entity body

 URL Method

 Uses GET method

 Input is uploaded in URL field of request line

www.somesite.com/animalsearch?monkeys&banana

Introduction 27

Method Types
 HTTP 1.0

 GET
 POST

 HEAD
 asks server to leave requested object out of response

 HTTP 1.1
 GET, POST, HEAD

 PUT
 Uploads file in entity body to path specified in URL field

 DELETE
 Deletes file specified in the URL field

Introduction 28

Method Types
status line

(protocol

status code

status phrase)

header

 lines

data, e.g.,

requested

HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

Introduction 29

HTTP Response Status Codes

Status Code appears in the first line in the server to

client response

200 OK

• request succeeded, requested object later in this msg

301 Moved Permanently

• requested object moved, new location specified later in this msg (Location:)

400 Bad Request

• request msg not understood by server

404 Not Found

• requested document not found on this server

505 HTTP Version Not Supported

