DATA GOMMUNICATOIN
NETWORKING

Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach
By: Kurose, Ross

Introduction

» Basics of Computer Networks
= Internet & Protocol Stack
= Application Layer
= Transport Layer
= Network Layer
« Data Link Layer

« Advanced Topics
» Case Studies of Computer Networks
» Internet Applications
« Network Management
» Network Security

Introduction 2

Application Layer

» Conceptual & implementation aspects of network application
protocols

Client-Server
Peer to Peer

« Applications & application level protocols
HTTP
FTP
SMTP/POP3/IMAP
DNS

« Create Network Applications
Socket AP

Introduction 3

transport
network
_data link
physical

= Programs run on end systems

= Network core devices do not run user
applications

= Communication over network

« Application Architectures
= Peerto peer

= Client-Server
network

data link application

physical transport
network

data link

Introduction

|
[l

- Server
« Permanent IP address
« Always on host
Data centers for scaling

= Client

= Communicate with server

- May be intermittently client/server

connected q,,;:[
May have dynamic IP addresses /

Do not communicate directly g ;L/
with each other s

Introduction 5

peer-peer

L.

= Arbitrary end systems
= Direct communication

- Peersrequest service from
each other and provide service
to each other in return

= Self scalability
Every new peer, a new service
capacity
New service
New demand

» Intermitted connection of peers
= Changed IP addresses
= Complex management

Introduction

Process

Program running within an end
host

= Process Communication
Within the same host

Inter-process communication
Defined by OS

Unication
Defined by OS

In different hosts
Exchanging messages

= P2P applications have client and
server processes as well

client process: process that
initiates communication

server process: process that
waits to be contacted

Introduction

= Process send/receive messages to/from their sockets

« Sending process relies on transport infrastfructure on
other side of door to deliver message to socket at
receiving process

application

socket \

[~

application

controlled by
app developer

controlled
/"' ‘f Internet b;O
% < >

Introduction 8

« IP Address of the host - Enough?
» [P address
« Port numbers associated with the process

« Example
= HTTP: 80
= Mail Server: 25

« Example: HTTP message to gaia.cs.umass.edu
« [P address: 128.119.245.12
« Port number: 80

Introduction 9

Application Layer Protocol

- Defines
= Types of messages
exchanged = Open profocols:

- e.g.reqguest, response : ,
2 « defined in RFCs

- Message Syntax = allows for
= Fields in the message and in’reroperobili’ry
their values
= e.g., HTTP, SMTP
- Message Semantics = Proprietary protocols:
= Meaning of the information K
in the fields = e.g. Skype

Rules for when and how to
send and receive messages

Introduction 10

Transport Service Requirements

= Data Integrity
= Reliable fransfer (FIP)
= Loss tolerant applications (Multimedia)

» Timing
 Low delay
= Online gaming
= VoIP

= Throughput
= FElastic
= |nelastic: Multimedia

« Security

Introduction 11

Transport Service Requirements

application dataloss throughput time sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no
real-time loss-tolerant audio: 5kbps-1Mbps/es, 100’ s
audio/video video:10kbps-5Mbpmsec

stored audio/video
interactive games
text messaging

loss-tolerant
loss-tolerant
no loss

same as above yes, few secs

few kbps up yes, 100’ s msec
elastic yes and no

Introduction

12

Internet Transport Protocol Services

. TCP
Reliable tfransport

= Flow conftrol

« Congestion Control

« Connection Oriented

« Does not Provide
= Timing
= Minimum throughput
= Guarantees for security

- UDP
« Unreliable data transfer

. Does not provide
Timing
= Minimum throughput
« Security

- f frol
s Why do we need UDP?

Introduction 13

Internet Transport Protocol Services

application underlying
application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP

streaming multimedia HTTP (e.g., YouTube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary

(e.g., Skype) TCP or UDP

Introduction 14

Securing TCP

- TCP & UDP
= NoO encryption

« Cleartext passwords sent info socket traverse internet
in cleartext

« Guarantees for security

« SSL
= Provides encrypted TCP connection
« Data integrity
« End-point authentication
= SSL Socket API
= Apps use SSL libraries which talk to TCP

= Cleartext passwords sent into socket traverse Internet
encrypted

Introduction 15

Weh & HTTP

- Web Page
= Consists of objects
« HTML file
- JPEG image
= Audio file

= Base HTML file which includes several referenced
objects

= Each object is addressable by a URL

www . someschool .edu/someDept/pic.gif

— e

host name path name

Introduction 16

HTTP: HyperText Transter Protocol

g

- Application layer S
protocol PC running
: Firefox browser

= Client-server model

= Client: browser that
requests, receives and
displays the Web objects

(-—)
server
running
Apache Web
server

= Server. Web server sends
objects in response to

requests iphone running
Safari browser

Introduction 17

HTTP Gonnections

. Uses TCP HTTP is “stateless™
server maintains no
- Client initiates TCP information about past
connection (creates client requests

socket) to server, port 80

. Server accepts TCP protocols that maintain “state”
connection from client are complex!

. HTTP messages past history (state) must be

(application layer maintained
messages) exchanged

between browser (HTTP if server/client crashes, their views
Client) & web serer of “state” may be inconsistent,

must be reconciled

= TCP Connection Closed

Introduction 18

HTTP Gonnections

= Non persistent HTTP

« At most one object sent over TCP connection
= After than connection is closed

« Downloading multiple objects requires multiple
connections

= Persistent HTTP

= Multiple objects can be sent over single TCP
connection between client and server

Introduction 19

Non-persistent HTTP

suppose user enters URL(contains text, references to 10 jpeg images)
www . someSchool . edu/someDepartment/home . index

la. HTTP client initiates TCP connection to
HTTP server (process) at

www.someSchool.edu on port 80 Ib. HTTP server at host

www.someSchool.edu waiting for

TCP connection at port 80.
/ “accepts” connection, notifying
2. HTTP client sends HTTP request client

message (containing URL) into TCP
connection socket. Message

S . : 3. HTTP server receives request
indicates that client wants object

: message, forms response message
someDepartment/home.index

containing requested object, and
/ sends message into its socket

20

Introduction

Non-persistent HTTP

4. HTTP server closes TCP

connection. \

5. HTTP client receives response
message containing html file,
displays html. Parsing html file, finds
|0 referenced jpeg objects

6.Steps |-5 repeated for
each of 10 jpeg objects

Introduction 21

Non Persistent HTTP: Response Time

= RTT o -
Round Trip Time
= Time for a packet to fravel e
from client to server and bacKk initiate TCP
connection —
- HTTP Response Time: RTT.
IRTT: initiate TCP connection request |
file -
- 1 RTT: GTTP request & first few
bytes of HTTP response to RTT<
return file transmission time P - file
file j
= Non persistent HTTP response received
time = ;
2RTT+file transmission time v v
time time
22

Introduction

. timeto
' }transmit

Persistent HTTP

= Non persistent HTTP problems
= Requires 2 RTT per object

= OS overhead for each TCP connection

= Browsers often open parallel TCP connections to fetch referenced objects

- Persistent HTTP
= Server leaves connection open after sending response

= Subsequent HTTP messages between same client-server sent over open
connections

= Client sends requests as soon as it encounters a referenced object

= As little as one RTT for all the referenced objects

Introduction 23

HTTP Request Message

request line

(GET, POST, ™ Gpy /index.html HTTP/1.1\r\h

HEAD commands)

header
lines

carriage return,

line feed at start

of line indicates — .
end of header lines

carriage return character
line-feed character

/

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;g=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: IS0-8859-1,utf-8;g=0.7\r\n
Keep-Alive: 115\r\n

Connection: keep-alive\r\n

— > \r\n

Introduction

24

HTTP Request Message: General Format

: request
method [sp| URL sp| version |cr|If]| Jine
header field name value |cr| If

header
lines
header field name value |cr| If
cr| If
entity body - body

Introduction 25

= POST method
« Web page often includes form input
= Input is uploaded to server in entity body

= URL Method
« Uses GET method

« |Input is uploaded in URL field of request line
www.somesite.com/animalsearch?monkeysé&banana

Introduction 26

Method Types

= HTTP 1.0
= GET
= POST
= HEAD
= Qsks server to leave requested object out of response

= HTTP 1.1
- GET, POST, HEAD

= PUT
« Uploads file in entity body to path specified in URL field

= DELETE
« Deletes file specified in the URL field

Introduction 27

status line

(protoeol. ==

status code
status phrase)

header
lines

—

Method Types

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02
GMT\r\n

ETag: "17dc6-a5c-b£f716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=IS0-8859-
1\r\n

\r\n

data, e_g_,/data data data data data ...

requested
HTML file

Introduction

28

HTTP Response Status Godes

Status Code appears in the first line in the server to
client response

200 OK
* request succeeded, requested object later in this msg
301 Moved Permanently
* requested object moved, new location specified later in this msg (Location:)
400 Bad Request
* request msg not understood by server
404 Not Found
* requested document not found on this server
505 HTTP Version Not Supported

Introduction 29

