
DATA COMMUNICATOIN 

NETWORKING 
Instructor: Ouldooz Baghban Karimi 

Course Book: Computer Networking, A Top-Down Approach 

               By: Kurose, Ross 

Introduction 



Introduction 2 

Course Overview 
 Basics of Computer Networks 

 Internet & Protocol Stack 

 Application Layer 

 Transport Layer 

 Network Layer 

 Data Link Layer 

 

 Advanced Topics 

 Case Studies of  Computer Networks 

 Internet Applications 

 Network Management 

 Network Security 



Introduction 3 

Application Layer 
 Conceptual & implementation aspects of network application 

protocols 

 Client-Server 

 Peer to Peer 

 

 Applications & application level protocols 

 HTTP 

 FTP 

 SMTP/POP3/IMAP 

 DNS 

 

 Create Network Applications 

 Socket API 

 



Introduction 4 

Creating a Network Application 

 Programs run on end systems 

 Network core devices do not run user 

applications 

 Communication over network 

 

 Application Architectures 

 Peer to peer 

 Client-Server 

 

application 

transport 

network 

data link 

physical 

application 

transport 

network 

data link 

physical 

application 

transport 

network 

data link 

physical 



Introduction 5 

Client-Server Structure 

 Server 

 Permanent IP address 

 Always on host 

 Data centers for scaling 

 

 Client 

 Communicate with server 

 May be intermittently 
connected 

 May have dynamic IP addresses 

 Do not communicate directly 

with each other 

client/server 



Introduction 6 

Peer to Peer Architecture 
 Arbitrary end systems  

 Direct communication 

 

 Peers request service from 
each other and provide service 

to each other in return 

 Self scalability 

 Every new peer, a new service 
capacity  

 New service 

 New demand 

 

 Intermitted connection of peers 

 Changed IP addresses 

 Complex management 

 

peer-peer 



Introduction 7 

Process Communication 
 Process 

 Program running within an end 
host 

 

 Process Communication 

 Within the same host 

 Inter-process communication 

 Defined by OS 

 

 Unication 

 Defined by OS 

 

 In different hosts 

 Exchanging messages 

 

 P2P applications have client and 
server processes as well 

 

client process: process that 

initiates communication 

server process: process that 

waits to be contacted 

 



Introduction 8 

Sockets 
 Process send/receive messages to/from their sockets 

 Sending process relies on transport infrastructure on 

other side of door to deliver message to socket at 

receiving process 

 

Internet 

controlled 

by OS 

 

controlled by 
app developer 

transport 

application 

physical 

link 

network 

process 

transport 

application 

physical 

link 

network 

process 
socket 



Introduction 9 

Addressing Processes 

 IP Address of the host – Enough? 

 IP address 

 Port numbers associated with the process 

 Example 

 HTTP: 80 

 Mail Server: 25 

 

 Example: HTTP message to gaia.cs.umass.edu 

 IP address: 128.119.245.12 

 Port number: 80 



Introduction 10 

Application Layer Protocol 
 Defines 

 Types of messages 
exchanged 

 e.g. request, response 

 

 Message Syntax 

 Fields in the message and 
their values 

 

 Message Semantics 

 Meaning of the information 
in the fields 

 

 Rules for when and how to 
send and receive messages 

 

 Open protocols: 

 defined in RFCs 

 allows for 

interoperability 

 e.g., HTTP, SMTP 

 Proprietary protocols: 

 e.g., Skype 



Introduction 11 

Transport Service Requirements 
 Data Integrity 

 Reliable transfer (FTP) 

 Loss tolerant applications (Multimedia) 
 

 Timing 
 Low delay 

 Online gaming 

 VoIP 

 

 Throughput 
 Elastic 

 Inelastic: Multimedia 
 

 Security 



application 

 

file transfer 

e-mail 

Web documents 

real-time  

audio/video 

stored audio/video 

interactive games 

text messaging 

data loss 

 

no loss 

no loss 

no loss 

loss-tolerant 

 

loss-tolerant 

loss-tolerant 

no loss 

throughput 

 

elastic 

elastic 

elastic 

audio: 5kbps-1Mbps 

video:10kbps-5Mbps 

same as above  

few kbps up 

elastic 

time sensitive 

 

no 

no 

no 

yes, 100’s  

msec 

yes, few secs 

yes, 100’s msec 

yes and no 

Transport Service Requirements 

Introduction 12 



Introduction 13 

Internet Transport Protocol Services 

 TCP 
 Reliable transport 
 Flow control 
 Congestion Control 

 Connection Oriented 
 Does not Provide 

 Timing  
 Minimum throughput 
 Guarantees for security 

 

 UDP 
 Unreliable data transfer 
 Does not provide 

 Timing 
 Minimum throughput 
 Security 
 Congestion Control 
 Flow Control Why do we need UDP? 



Introduction 14 

Internet Transport Protocol Services 

application 

 

e-mail 

remote terminal access 

Web  

file transfer 

streaming multimedia 

 

Internet telephony 

 

application 

layer protocol 

 

SMTP [RFC 2821] 

Telnet [RFC 854] 

HTTP [RFC 2616] 

FTP [RFC 959] 

HTTP (e.g., YouTube),  

RTP [RFC 1889] 

SIP, RTP, proprietary 

(e.g., Skype) 

underlying 

transport protocol 

 

TCP 

TCP 

TCP 

TCP 

TCP or UDP 

 

 

TCP or UDP 



Introduction 15 

Securing TCP 

 TCP & UDP 
 No encryption 

 Cleartext passwords sent into socket traverse internet 
in cleartext 

 Guarantees for security 

 

 SSL 
 Provides encrypted TCP connection 
 Data integrity 

 End-point authentication 

 SSL Socket API 
 Apps use SSL libraries which talk to TCP 

 Cleartext passwords sent into socket traverse Internet 
encrypted 



Introduction 16 

Web & HTTP 
 Web Page 

 Consists of objects 
 HTML file 

 JPEG image 

 Audio file 

 

 Base HTML file which includes several referenced 
objects 
 Each object is addressable by a URL 

www.someschool.edu/someDept/pic.gif 

host name path name 



Introduction 17 

HTTP: HyperText Transfer Protocol 

 Application layer 

protocol 

 Client-server model 

 Client: browser that 
requests, receives and 

displays the Web objects 

 

 Server: Web server sends 

objects in response to 

requests 

PC running 

Firefox browser 

server  

running 

Apache Web 

server 

iphone running 

Safari browser 



Introduction 18 

HTTP Connections 

 Uses TCP 
 

 Client initiates TCP 
connection (creates 
socket) to server, port 80 

 

 Server accepts TCP 
connection from client 

 

 HTTP messages 
(application layer 
messages) exchanged 
between browser (HTTP 
Client) & web serer 

 

 TCP Connection Closed 

HTTP is “stateless” 
server maintains no 

information about past 
client requests 

protocols that maintain “state” 
are complex! 

 
past history (state) must be 

maintained 
 
if server/client crashes, their views 

of “state” may be inconsistent, 
must be reconciled 

 



Introduction 19 

HTTP Connections 

 Non persistent HTTP 

 At most one object sent over TCP connection 

 After than connection is closed 

 Downloading multiple objects requires multiple 

connections 

 

 Persistent HTTP 

 Multiple objects can be sent over single TCP 

connection between client and server 



Introduction 20 

Non-persistent HTTP 

1a. HTTP client initiates TCP connection to 

HTTP server (process) at 

www.someSchool.edu on port 80 

2. HTTP client sends HTTP request 

message (containing URL) into TCP 

connection socket. Message 

indicates that client wants object 

someDepartment/home.index 

1b. HTTP server at host 

www.someSchool.edu waiting for 

TCP connection at port 80.  

“accepts” connection, notifying 

client 

3. HTTP server receives request 

message, forms response message 

containing requested object, and 

sends message into its socket 

www.someSchool.edu/someDepartment/home.index 

suppose user enters URL:  (contains text,  references to 10 jpeg images) 



Introduction 21 

Non-persistent HTTP 

5. HTTP client receives response 

message containing html file, 

displays html.  Parsing html file, finds 

10 referenced jpeg  objects 

6. Steps 1-5 repeated for 

each of 10 jpeg objects 

4. HTTP server closes TCP 

connection.  



Introduction 22 

Non Persistent HTTP: Response Time 

 RTT 
 Round Trip Time 

 Time for a packet to travel 
from client to server and back 

 
 HTTP Response Time: 

 1RTT: initiate TCP connection 
 

 1 RTT: GTTP request & first few 
bytes of HTTP response to 
return file transmission time 

 
 Non persistent HTTP response 

time = 
    2RTT+file transmission time 

time to  
transmit  
file 

initiate TCP 
connection 

RTT 

request 
file 

RTT 

file 
received 

time time 



Introduction 23 

Persistent HTTP 

 Non persistent HTTP problems 
 Requires 2 RTT per object  

 

 OS overhead for each TCP connection 

 

 Browsers often open parallel TCP connections to fetch referenced objects 

 
 Persistent HTTP 

 Server leaves connection open after sending response 

 

 Subsequent HTTP messages between same client-server sent over open 
connections 

 

 Client sends requests as soon as it encounters a referenced object 

 

 As little as one RTT for all the referenced objects 



Introduction 24 

HTTP Request Message 

request line 

(GET, POST,  

HEAD commands) 

header 

 lines 

carriage return,  

line feed at start 

of line indicates 

end of header lines 

carriage return character 

line-feed character 

GET /index.html HTTP/1.1\r\n 

Host: www-net.cs.umass.edu\r\n 

User-Agent: Firefox/3.6.10\r\n 

Accept: text/html,application/xhtml+xml\r\n 

Accept-Language: en-us,en;q=0.5\r\n 

Accept-Encoding: gzip,deflate\r\n 

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n 

Keep-Alive: 115\r\n 

Connection: keep-alive\r\n 

\r\n 



Introduction 25 

HTTP Request Message: General Format 
request 
line 

header 
lines 

body 

method sp sp cr lf version URL 

cr lf value header field name 

cr lf value header field name 

~ ~ ~ ~ 

cr lf 

entity body ~ ~ ~ ~ 



Introduction 26 

Uploading From Input 

 POST method 

 Web page often includes form input 

 Input is uploaded to server in entity body 

 

 URL Method 

 Uses GET method 

 Input is uploaded in URL field of request line 

www.somesite.com/animalsearch?monkeys&banana 

 



Introduction 27 

Method Types 
 HTTP 1.0 

 GET 
 POST 

 HEAD 
 asks server to leave requested object out of response 

 

 HTTP 1.1 
 GET, POST, HEAD 

 

 PUT 
 Uploads file in entity body to path specified in URL field 

 

 DELETE 
 Deletes file specified in the URL field 

 



Introduction 28 

Method Types 
status line 

(protocol 

status code 

status phrase) 

header 

 lines 

data, e.g.,  

requested 

HTML file 

HTTP/1.1 200 OK\r\n 

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n 

Server: Apache/2.0.52 (CentOS)\r\n 

Last-Modified: Tue, 30 Oct 2007 17:00:02 

GMT\r\n 

ETag: "17dc6-a5c-bf716880"\r\n 

Accept-Ranges: bytes\r\n 

Content-Length: 2652\r\n 

Keep-Alive: timeout=10, max=100\r\n 

Connection: Keep-Alive\r\n 

Content-Type: text/html; charset=ISO-8859-

1\r\n 

\r\n 

data data data data data ...  



Introduction 29 

HTTP Response Status Codes 

Status Code appears in the first line in the server to 

client response 

 

200 OK 

• request succeeded, requested object later in this msg 

301 Moved Permanently 

• requested object moved, new location specified later in this msg (Location:) 

400 Bad Request 

• request msg not understood by server 

404 Not Found 

• requested document not found on this server 

505 HTTP Version Not Supported 


