DATA GOMMUNIGATOIN
NETWORKING

Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach
By: Kurose, Ross

Introduction

« Basics of Computer Networks
= Internet & Protocol Stack
= Application Layer
= Transport Layer
= Network Layer
« Data Link Layer

» Advanced Topics
» Case Studies of Computer Networks
» Internet Applications
« Network Management
» Network Security

Introduction 2

TGP Sender Events

Data received from App Timeout

Create segment with = Retfransmit segment that
sequence number caused timeout

= Restart timer
Sequence number.is byte-
s’rreom number of first data ACK ieceived
byte in segment

Start timer if not already = Lackacdionieddes

. previously unACKed
runn!ng : segments
= Think of fimer as for oldest « Update what is known to
unACKed segment be ACKEd

= Expiration interval:

e as i = Start timer if there are stfill

unACKed segments

Introduction

TGP Sender Events

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)

: if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSegNum
timeout

retransmit not-yet-acked segment

with smallest seq. #

_ : _ start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Introduction

TGP: Retransmission Scenarios

Host A Host B Host A

Host B
g | L] .
SendBase=
T Seq=92; es of data Seq=92, of data
= 5 es of da
3 M 2
£ =

Seq= /] s of data
SendBase=100
A 0 SendBase=120
AC 20
lost ACK scenario SendBase=120

premature timeout

Introduction

TGP: Retransmission Scenarios

Host A Host B
L | | %

A

l—— timeout

Seq=120, s of data

Cumulative ACK

Introduction

Event at receiver

TGP ACK Generation

TCP receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

Introduction

7

= Time-out period often
relatively long

= Long delay before
resending lost packet

= Detect lost segments
via duplicate ACKs

= Sender oftfen sends
many segments back-
to-back

= |f segment is lost, there
will likely be many
duplicate ACKs.

TGP FAST Retransmit

TCP fast retransmit

If sender receives 3 ACKs for
same data (“friple duplicate
ACKs”), resend unACKed
segment with smallest
sequence number

= Likely that unACKed
segment lost, so do not wait
for fimeout

Introduction

W

timeout

TGP FAST Retransmit

Host B

=92, 8 bytes of data
f data

=100

=100, 20 bytes of data

y Fast retransmit after sender
receipt of triple duplicate ACK

Introduction

TGP Flow Control

application may

remove data from

TCP socket buffers

... Slower than TCP
receiver is delivering —
(sender is sending)

application
TCP socket 0S
receiver buffers
N
TCP
code
[] .

Flow Control

Receiver controls sender, so sender
won’ t overflow receiver’ s buffer by
transmitting too much, too fast

fr"omsenderI
receiver protocol stack

Introduction

TGP Flow Control

= Receiver "advertises” free buffer

space by including rwnd value B appicTiol pioctss
in TCP header of receiver-to- r'—\
sender segments 1
Ss . RcvBuffer buffered data

= RcvBuffer size set via socket a2

options (typical default is 4096 I

bytes) rwnd free buffer space
= Many operating systems | 18

autoadjust RevBuffer =z I

= Sender limits amount of [CEsegme pohioads

unACKed (“in-flight”) data to
receiver's rwnd value recelver-side buffering

= Guarantees receive buffer will
not overflow

Introduction 11

Before exchanging data, sender/receiver “handshake™:

= Agree to establish connection (each knowing the other willing to establish
connection)

= Agree on connection parameters

application
O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

application

/ ‘f network network
o éocket clientSocket = : i

newSocket ("hostname" , "port
number") ;

Socket connectionSocket =
welcomeSocket.accept() ;

Introduction

Two-way handshake

24 -

¥y &4

/el/ il
ESTAB ¢

L | 5

b
choose x

® ESTAB

ESTAB {

Q: Will 2-way handshake
always work in network?

= Variable delays

= Retransmitted messages (e.g.
reg_conn(x)) due to message loss

= Message reordering

= Cannoft “see” other side

Introduction

Two-way “ﬂ_llllSllﬂl(B Fallure

5

choose x = z choose x = 2
3 ESTAB = ESTAB
retransmit retransmit
req_conn(x) reg_conn(x)
ESTAB ESTAB d t
accep
req_jconn(x) retransmit > data(x+1)
data(x+1)
| _congection | _ _yonpection | _ _ _
client xcompletes | server cient ¥ server
terminates forgets x terminates forgets x
D
e S
ion!
half open connection! data(x+1)
(no client!)
Introduction 14

TGP Three-way Handshake

client state 5 / E server state
LISTEN e LISTEN

choose init seq num, x
il send TCP SYN msg
SYNSENT SYNbIT= eq=x
choose init seq num, y
send TCP SYNACK

msg, acking SYN SYN RCVD

v received SYNACK(x)
indicates server is live;

Pl send ACK for SYNACK;
this segment may contain
client-to-server data

received ACK(y)
indicates client is live

ESTAB

Introduction

TGP Three-way Handshake

closed

Socket connectionSocket =
welcomeSocket.accept () ;

A

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for
communication back to client

l

‘ »

ACK(ACKnum=y+1)
A

Socket clientSocket =
newSocket ("hostname" , "port
number") ;

SYN(segq=x)

‘ SYNACK(segq=y,ACKnum=x+1)

ACK(ACKnum=y+1)

Introduction

Glosing a TGP Gonnection

= Client, server each close their side of connection
= Send TCP segment with FIN bit = 1

= Respond to received FIN with ACK

= Onreceiving FIN, ACK can be combined with own FIN

= Simultaneous FIN exchanges can be handled

Introduction 17

Closing a Tcl’ ﬂﬂlllle(:llﬂll

client state
ESTAB “%@

server state

ESTAB

| clientSocket.close () \FINb.t 1
FIN_WAIT 1 can no longer it=1, seq=X
send but can q\> v
receive data L CLOSE_WAIT
! ACKbit=1; ACKnum=x+1 can stil
FIN_WAIT 2 wait for server —" e
close
i LAST_ACK
! FINbit=1, seq=
TIM'ED WAIT — 4/LN = can no longer
2% . R UL send data
ACKbit=1; ACKnum=y+1
timed wait S v
for 2*max CLOSED

segment lifetime

CLOSED i

Introduction 18

