
DATA COMMUNICATOIN

NETWORKING
Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach

 By: Kurose, Ross

Introduction

Introduction 2

Course Overview
 Basics of Computer Networks

 Internet & Protocol Stack

 Application Layer

 Transport Layer

 Network Layer

 Data Link Layer

 Advanced Topics

 Case Studies of Computer Networks

 Internet Applications

 Network Management

 Network Security

Introduction 3

TCP Sender Events
Data received from App

 Create segment with
sequence number

 Sequence number is byte-
stream number of first data
byte in segment

 Start timer if not already
running

 Think of timer as for oldest
unACKed segment

 Expiration interval:
TimeOutInterval

Timeout

 Retransmit segment that
caused timeout

 Restart timer

ACK received

 If ACK acknowledges
previously unACKed
segments

 Update what is known to
be ACKed

 Start timer if there are still
unACKed segments

Introduction 4

TCP Sender Events

wait

for

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

 start timer

data received from application above

retransmit not-yet-acked segment
 with smallest seq. #
start timer

timeout

if (y > SendBase) {

 SendBase = y

 /* SendBase–1: last cumulatively ACKed byte */

 if (there are currently not-yet-acked segments)

 start timer

 else stop timer

 }

ACK received, with ACK field value y

Introduction 5

TCP: Retransmission Scenarios

lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X ti
m

e
o
u
t

ACK=100

premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK = 100

Seq = 92, 8
bytes of data

ti
m

e
o
u
t

ACK = 120

Seq=100, 20bytes of data

ACK = 120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Introduction 6

TCP: Retransmission Scenarios

X

Cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

Introduction 7

TCP ACK Generation
Event at receiver

Arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

Arrival of in-order segment with

expected seq #. One other

segment has ACK pending

Arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

Arrival of segment that

partially or completely fills gap

TCP receiver action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

Immediately send single cumulative

ACK, ACKing both in-order segments

Immediately send duplicate ACK,

indicating seq. # of next expected byte

Immediate send ACK, provided that

segment starts at lower end of gap

Introduction 8

TCP FAST Retransmit
 Time-out period often

relatively long
 Long delay before

resending lost packet

 Detect lost segments
via duplicate ACKs
 Sender often sends

many segments back-
to-back

 If segment is lost, there
will likely be many
duplicate ACKs.

If sender receives 3 ACKs for
same data (“triple duplicate
ACKs”), resend unACKed
segment with smallest
sequence number

 Likely that unACKed

segment lost, so do not wait
for timeout

TCP fast retransmit

Introduction 9

TCP FAST Retransmit

X

Fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Introduction 10

TCP Flow Control application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

Receiver controls sender, so sender

won’t overflow receiver’s buffer by

transmitting too much, too fast

Flow Control

Introduction 11

TCP Flow Control

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process
 Receiver “advertises” free buffer

space by including rwnd value

in TCP header of receiver-to-

sender segments

 RcvBuffer size set via socket

options (typical default is 4096

bytes)

 Many operating systems
autoadjust RcvBuffer

 Sender limits amount of

unACKed (“in-flight”) data to
receiver’s rwnd value

 Guarantees receive buffer will

not overflow

receiver-side buffering

Introduction 12

Connection Management
Before exchanging data, sender/receiver “handshake”:

 Agree to establish connection (each knowing the other willing to establish

connection)

 Agree on connection parameters

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

Socket clientSocket =

 newSocket("hostname","port

number");

Socket connectionSocket =

welcomeSocket.accept();

Introduction 13

Agreeing to Establish a Connection

Q: Will 2-way handshake

always work in network?

 Variable delays

 Retransmitted messages (e.g.
req_conn(x)) due to message loss

 Message reordering

 Cannot “see” other side

Two-way handshake

Let’s talk

OK
ESTAB

ESTAB

choose x

req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Introduction 14

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
 req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
 req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Two-way Handshake Failure

Introduction 15

TCP Three-way Handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Introduction 16

TCP Three-way Handshake

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =

 newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =

welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)
create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)

ACK(ACKnum=y+1)

L

Introduction 17

Closing a TCP Connection

 Client, server each close their side of connection

 Send TCP segment with FIN bit = 1

 Respond to received FIN with ACK

 On receiving FIN, ACK can be combined with own FIN

 Simultaneous FIN exchanges can be handled

Introduction 18

Closing a TCP Connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

 wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=x can no longer
send but can
 receive data

clientSocket.close()

client state

server state

ESTAB ESTAB

