DATA COMMUNICATOIN NETWORKING

Instructor: Ouldooz Baghban Karimi

Course Book & Slides:

Computer Networking, A Top-Down Approach By: Kurose, Ross

Course Overview

Basics of Computer Networks

- Internet & Protocol Stack
- Application Layer
- Transport Layer
- Network Layer
- Data Link Layer

Advanced Topics

- Case Studies of Computer Networks
- Internet Applications
- Network Management
- Network Security

Routing in the Internet

Intra-AS Routing

- Also known as Interior Gateway Protocols
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
- Inter-AS Routing
 - BGP: Border Gateway Protocol

Routing Information Protocol

- Distance Vector Algorithm
 - Distance Vector
 - Distance metric: Hope Count
 - Max: 15 hops
 - Each link costs 1
 - DVs exchanged with neighbors every 30/sec in advertisement
 - Each advertisement lists of up to 25 destination subnets

from router A to destination subnets:

subnet	hops
u	1
V	2
W	2
X	3
у	3
Z	2

Routing Information Protocol

routing table in router D

destination subnet next router	# hops to dest	
W	Α	2
y	В	2
Z	В	7
X		1

Routing Information Protocol

A-to-D advertisement

routing table in router D

destination subnet next router	# hops to dest	
W	Α	2
y	В	2
Z	ВА	7 _5
X		1
		••••

RIP Link Failure & Recovery

- If no advertisement heard after 180 Sec
 - Neighbor/link declared dead
 - New advertisement sent to neighbors
 - Neighbors in turn send out new advertisements if their tables changed
 - Link Failure information propagates to entire net
 - Poison reverse is used to prevent Ping-Pong loops

RIP Table Processing

- RIP routing tables managed by application-level process called route-d (daemon)
- Advertisements sent in UDP packets, periodically repeated

Open Shortest Path First

- Open: publicly available
- Link State Algorithm
 - LS packet dissemination
 - Topology map at each node
 - Route computation using Dijekstra's algorithm
- OSPF advertisement carries one entry per neighbor
 - Advertisements flooded to entire AS
 - Carried in OSPF messages directly over IP
- ISIS routing protocol: Nearly identical to OSPF

OSPF Advanced Features

- Security
 - All OSPF messages authenticated (to prevent malicious intrusion)
- Multi-path
 - Multiple same-cost paths allowed (only one path in RIP)
- TOD
 - For each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort ToS; high for real time ToS)
- Integrated uni- and multicast support:
- Integrated Unicast and Multicast Support
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- Hierarchical OSPF in large domains

Hierarchical OSPF

Hierarchical OSPF

- Two-level hierarchy: local area, backbone.
 - Link-state advertisements only in area
 - Each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- Area border routers: summarize distances to nets in own area, advertise to other Area Border routers.
- Backbone routers: run OSPF routing limited to backbone.
- Boundary routers: connect to other AS's.

Internet Inter-AS Routing: BGP

- Border Gateway Protocol: the de facto inter-domain routing protocol
 - Glue that holds the Internet together
- BGP provides each AS a means to
 - eBGP: Obtain subnet reachability information from neighboring Ass.
 - iBGP: Propagate reachability information to all AS-internal routers.
 - Determine good routes to other networks based on reachability information and policy.
- Allows subnet to advertise its existence to rest of Internet

BGP Basics

- BGP session: two BGP routers (peers) exchange BGP messages:
 - Advertising paths to different destination network prefixes (path vector protocol)
 - Exchanged over semi-permanent TCP connections
- When AS3 advertises a prefix to AS1
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

BGP: Distributing Path Information

- Using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP do distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- When router learns of new prefix, it creates entry for prefix in its forwarding table.

Path Attributes & BGP Routes

- Advertised prefix includes BGP attributes
 - Prefix + attributes = route
- Two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS
 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)
- Gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - Policy-based routing

BGP

Route Selection

- Router may learn about more than 1 route to destination AS, selects route based on:
 - Local preference value attribute: policy decision
 - Shortest AS-PATH
 - Closest NEXT-HOP router: hot potato routing
 - Additional criteria

Messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

BGP Routing Policy

- A,B,C are provider networks
- X,W,Y are customer (of provider networks)
- X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C

BGP Routing Policy

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Why different Intra-AS & Inter-AS?

Policy

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed

Scale

Hierarchical routing saves table size, reduced update traffic

Performance

- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance