DATA COMMUNICATON NETWORKING

Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach

By: Kurose, Ross

Introduction

Course Overview

Basics of Computer Networks

- Internet & Protocol Stack
- Application Layer
- Transport Layer
- Network Layer
- Data Link Layer

Advanced Topics

- Case Studies of Computer Networks
- Internet Applications
- Network Management
- Network Security

Network Layer

Transport segment

- From sending to receiving host
- On sending side encapsulates segments into datagrams
- On receiving side, delivers segments to transport layer
- Network layer protocols in every host, router
- Router examines header fields in all IP datagrams passing through it

Network Layer Functions

Forwarding

- Move packets from router's input to appropriate router output
- Analogy
 - Process of getting through single interchange

Routing

- Determine route taken by packets from source to destination
- Routing algorithms
- Analogy
 - Process of planning trip from source to destination

Interlay between Routing & Forwarding

Connection Setup

 Before datagrams flow, two end hosts and intervening routers establish virtual connection

Connection Service

- Network Layer
 - Between two hosts (may also involve intervening routers in case of VCs)
- Transport Layer
 - Between two processes

Network Service Model

Q: What service model for "channel" transporting datagrams from sender to receiver?

Individual datagrams

- Guaranteed delivery
 - Guaranteed delivery with less than 40 msec delay

Flow of datagrams

- In-order datagram delivery
- Guaranteed minimum bandwidth to flow
- Restrictions on changes in inter-packet spacing

Network Service Model

Network		Service	Guarantees ?				Congestion
Arch	hitecture	Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Network Service Model

Q: What service model for "channel" transporting datagrams from sender to receiver?

Individual datagrams

- Guaranteed delivery
 - Guaranteed delivery with less than 40 msec delay

Flow of datagrams

- In-order datagram delivery
- Guaranteed minimum bandwidth to flow
- Restrictions on changes in inter-packet spacing

Connection & Connection-less Service

Datagram network

Network-layer connectionless service

Virtual-circuit network

- Network-layer connection service
- Analogous to TCP/UDP connection-oriented / connectionless transport-layer services, but:
 - Service: host-to-host
 - No choice: network provides one or the other
 - Implementation: in network core

Virtual Circuits

• Call setup, teardown for each call before data can flow

- Each packet carries VC identifier
 - NOT destination host address

 Every router on source-destination path maintains "state" for each passing connection

 Link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

VC Implementation

A VC consists of

- path from source to destination
- VC numbers, one number for each link along path
- entries in forwarding tables in routers along path
- Packet belonging to VC carries VC number
 - rather than destination address
- VC number can be changed on each link
 - new VC number comes from forwarding table

VC Forwarding Table

Forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
	····		

VC routers maintain connection state information!

VC: Signaling Protocol

- To setup, maintain teardown VC
- Used in ATM, frame-relay, X.25
- Not used in today's Internet

Datagram Networks

- No call setup at network layer
- Routers: no state about end-to-end connections
 - No network-level concept of "connection"
- Packets forwarded using destination host address

Datagram Forwarding Table

Datagram Forwarding Table

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 1111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 1111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 1111111	2
otherwise	3

Q: But what happens if ranges don't divide up so nicely?

Longest Prefix Matching

Longest prefix matching

When looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Ra	Link interface		
11001000 00010111	00010***	******	0
11001000 00010111	00011000	******	1
11001000 00010111	00011***	******	2
otherwise			3

Datagram or VC: Why?

Internet (datagram)

- Data exchange among computers
 - "elastic" service, no strict timing req.
- Many link types
 - Different characteristics
 - Uniform service difficult
- "smart" end systems (computers)
 - Can adapt, perform control, error recovery
 - Simple inside network, complexity at "edge"

ATM (VC)

- Evolved from telephony
- Human conversation:
 - Strict timing, reliability requirements
 - Need for guaranteed service
- "dumb" end systems
 - Telephones
 - Complexity inside network