
DATA COMMUNICATOIN

NETWORKING
Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach

 By: Kurose, Ross

Introduction

Introduction 2

Course Overview
 Basics of Computer Networks

 Internet & Protocol Stack

 Application Layer

 Transport Layer

 Network Layer

 Data Link Layer

 Advanced Topics

 Case Studies of Computer Networks

 Internet Applications

 Network Management

 Network Security

Introduction 3

Pipelined Protocols
Go-back-N:

 Sender can have up to N
un-ACKed packets in
pipeline

 Receiver only sends
cumulative ACK
 Does not ACK packet if there

is a gap

 Sender has timer for oldest
un-ACKed packet
 When timer expires, retransmit

all un-ACKed packets

Selective Repeat:

 Sender can have up to N

un-ACKed packets in

pipeline

 Receiver sends individual

ACKs for each packet

 Sender maintains timer for

each un-ACKed packet

 When timer expires,

retransmit only that un-

ACKed packet

Introduction 4

Go-Back-N: Sender
 k-bit sequence number in packet header

 “window” of up to N, consecutive unACKed packets allowed

 ACK(n): ACKs all packets up to, including n - cumulative

ACK

 May receive duplicate ACKs

 Timer for oldest in-flight packet

 Timeout(n): retransmit packet n and all higher sequence

number packets in window

Introduction 5

GBN: Sender FSM

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

 udt_send(sndpkt[nextseqnum])

 if (base == nextseqnum)

 start_timer

 nextseqnum++

 }

else

 refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum) stop_timer else start_timer

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

 && corrupt(rcvpkt)

L

Introduction 6

GBN: Receiver FSM

Wait

udt_send(sndpkt)

default

 rdt_rcv(rcvpkt)

 && notcurrupt(rcvpkt)

 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

 make_pkt(expectedseqnum,ACK,chksum)

L

 ACK-only: always send ACK for correctly-received packet with

highest in-order sequence number

 May generate duplicate ACKs

 Need only remember expectedseqnum

 Out-of-order packet

 Discard (do not buffer): no receiver buffering!

 Re-ACK packet with highest in-order sequence number

Introduction 7

GBN
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

X loss

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Introduction 8

Selective Repeat

 Receiver acknowledges every correctly received packets

 Buffers packets, as needed, for eventual in-order delivery

to upper layer

 Sender only resends packets for which ACK not received

 Sender timer for each unACKed packet

 Sender window

 N consecutive sequence numbers

 Limits sequence numbers of sent, unACKed packets

Introduction 9

Selective Repeat: Windows

Introduction 10

Selective Repeat

Data from above:

 if next available sequence

number in window, send packet

Timeout(n):

 Resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N]:

 Mark packet n as received

 If n smallest unACKed pkt,

advance window base to next

unACKed sequence number

Sender

packet n in [rcvbase, rcvbase+N-1]

 send ACK(n)

 out-of-order: buffer

 in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-
yet-received packet

Packet n in [rcvbase-N,rcvbase-1]

 ACK(n)

Otherwise:
 Ignore

Receiver

Introduction 11

Selective Repeat
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

X loss

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack4 arrived

Q: what happens when ack2 arrives?

Introduction 12

Selective Repeat Dilemma

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2 X

X

X

will accept packet
with seq number 0

(b) oops!

Receiver can’t see sender side. receiver behavior identical in both cases! Something (very) wrong!

receiver window
(after receipt)

sender window
(after receipt)

Example:
• Sequence number’s: 0, 1, 2, 3

• Window size=3
• Receiver sees no difference in two scenarios!
• Duplicate data accepted as new in (b)

Q: what relationship between sequence
number size and window size to

avoid problem in (b)?

Introduction 13

TCP Overview
 RFCs: 793,1122,1323, 2018, 2581Application Layer

 Point-to-point
 One sender

 One receiver

 Reliable, in-order byte steam
 No “message boundaries”

 Pipelined

 Full duplex data
 Bi-directional data flow in same connection

 MSS: maximum segment size

 Connection-oriented
 Handshaking (exchange of control messages) initiates sender, receiver state before data exchange

 Flow controlled
 Sender will not overwhelm receiver

Introduction 14

TCP Overview

source port number destination port number

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointer checksum

F S R P A U
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK number

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

Number of bytes

receiver willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

Introduction 15

TCP Sequence Numbers & ACKs

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Sequence numbers
 Byte stream “number” of

first byte in segment’s data

Acknowledgements
 Sequence number of next

byte expected from other side

 Cumulative ACK

Q: How receiver handles out-of-order segments?

A: TCP spec does not say

Introduction 16

TCP Sequence Numbers & ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host B Host A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Introduction 17

TCP Round Trip Time & Timeout

Q: How to set TCP timeout

value?

 Longer than RTT

 But RTT varies

 Too short: premature timeout,
unnecessary retransmissions

 Too long: slow reaction to
segment loss

Q: How to estimate RTT?

 SampleRTT: measured time

from segment transmission until

ACK receipt

 Ignore retransmissions

 SampleRTT: will vary, want

estimated RTT “smoother”

 Average several recent

measurements, not just
current SampleRTT

Introduction 18

TCP Round Trip Time & Timeout

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 Exponential weighted moving average
 Influence of past sample decreases exponentially fast
 Typical value: = 0.125

Introduction 19

TCP Round Trip Time & Timeout

 Timeout interval: EstimatedRTT plus “safety margin”
 Large variation in EstimatedRTT larger safety margin

 Estimate SampleRTT deviation from EstimatedRTT

DevRTT = (1-)*DevRTT +

 *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

