DATA COMMUNICATON NETWORKING

Instructor: Ouldooz Baghban Karimi

Course Book & Slides:

Computer Networking, A Top-Down Approach By: Kurose, Ross

Course Overview

Basics of Computer Networks

- Internet & Protocol Stack
- Application Layer
- Transport Layer
- Network Layer
- Data Link Layer

Advanced Topics

- Case Studies of Computer Networks
- Internet Applications
- Network Management
- Network Security

Link Layer

We will learn

- Principles behind link layer services
 - Error detection
 - Error correction
 - Link layer addressing
 - Local area networks
 - Ethernet
 - WLANs
- Installation & implementation of various link layer technologies

Link Layer

- Datagram transferred by different link protocols over different links
- Hosts and routers: Nodes
- Communication channels that connect adjacent nodes along the communication path: links
 - Wireless links
 - Wired links
 - LANs
- Layer 2 packet: Frame, encapsulated datagram

Data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link Layer Services

- Framing, link access:
 - Encapsulate datagram into **frame**, adding header, trailer
 - Channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, destination
 - Different from IP address!
- Reliable delivery between adjacent nodes
 - Seldom used on low bit-error link (fiber, some twisted pair)
 - Wireless links: high error rates
 - Q: why both link-level and end-end reliability?

Link Layer Services

- Flow control
 - Pacing between adjacent sending and receiving nodes
- Error detection
 - Errors caused by signal attenuation, noise.
 - Receiver detects presence of errors
 - Signals sender for retransmission or drops frame
- Error correction
 - Receiver identifies and corrects bit error(s) without resorting to retransmission
- Half-duplex and full-duplex
 - With half duplex, nodes at both ends of link can transmit, but not at same time

Implementation

- In each and every host
- Link layer implemented in adaptor (network interface card, NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- Attaches into host's system buses
- Combination of hardware, software, firmware

Link Layer Services

- Sending side:
 - Encapsulates datagram in frame
 - Adds error checking bits, rdt, flow control, etc.
- Receiving side
 - Looks for errors, rdt, flow control, etc
 - Extracts datagram, passes to upper layer at receiving side

Error Detection

EDC= Error Detection and Correction bits (redundancy) D = Data protected by error checking, may include header fields

- Error detection not 100% reliable!
 - Protocol may miss some errors, but rarely
 - Larger EDC field yields better detection and correction

Error Detection

Single bit parity: detect single bit errors

Two-dimensional bit parity: detect and correct single bit errors

Internet Checksum

Goal: detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

Sender

- Treat segment contents as sequence of 16-bit integers
- Checksum: addition (1's complement sum) of segment contents
- Sender puts checksum value into UDP checksum field

Receiver

- Compute checksum of received segment
- Check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?

Cyclic Redundancy Check

- More powerful error-detection coding
- View data bits, D, as a binary number
- Choose r+1 bit pattern (generator), G
- Goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - Receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - Can detect all burst errors less than r+1 bits
- Widely used in practice (Ethernet, 802.11 WiFi, ATM)

$$\begin{array}{c} \longleftarrow & d \text{ bits} & \longrightarrow & f \text{ bits} \\ \hline D: \text{ data bits to be sent } R: CRC \text{ bits} \\ pattern \\ D * 2^{r} XOR R \\ \end{array} \begin{array}{c} mathematical \\ formula \end{array}$$

CRC Example

We want: $D \cdot 2^r XOR R = nG$ Equivalently: $D \cdot 2^r = nG XOR R$ Equivalently: if we divide $D \cdot 2^r$ by G, want

remainder R to satisfy:

R = remainder[
$$\frac{D \cdot 2^r}{G}$$
]

G

Multiple Access

- Two types of "links"
 - Point-to-point
 - PPP for dial-up access
 - Point-to-point link between Ethernet switch, host
 - Broadcast (shared wire or medium)
 - Old-fashioned Ethernet
 - Upstream HFC
 - 802.11 wireless LAN

Course Overview

Single shared broadcast channel

- Two or more simultaneous transmissions by nodes
 - Interference
 - Collision if node receives two or more signals at the same time

Multiple access protocol

- Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- Communication about channel sharing must use channel itself!
 - No out-of-band channel for coordination

An Ideal MA Protocol

Given: broadcast channel of rate R bps

Desired:

- When one node wants to transmit, it can send at rate R.
- When M nodes want to transmit, each can send at average rate R/M
- Fully decentralized:
 - No special node to coordinate transmissions
 - No synchronization of clocks, slots
- Simple

MAC Protocols: Taxonomy

Three broad classes

Channel partitioning

- Divide channel into smaller "pieces" (time slots, frequency, code)
- Allocate piece to node for exclusive use

Random access

- Channel not divided, allow collisions
- Recover from collisions

Taking turns

Nodes take turns, but nodes with more to send can take longer turns

Channel Partitioning: TDMA

TDMA: time division multiple access

- Access to channel in rounds
- each station gets fixed length slot (length = packet trans time) in each round
- Unused slots go idle
- Example: 6-station LAN, 1,3,4 have packet, slots 2,5,6 idle

Channel Partitioning: FDMA

FDMA: frequency division multiple access

- Channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- Example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Random Access

- When node has packet to send
 - Transmit at full channel data rate R.
 - No a priori coordination among nodes
- Two or more transmitting nodes → "collision"
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - Slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA