DATA COMMUNICATOIN NETWORKING

Instructor: Ouldooz Baghban Karimi

Course Book: Computer Networking, A Top-Down Approach, Kurose, Ross Slides:

- Course book Slides
- Slides from Princeton University COS461 Spring 2012 offering, Jennifer Rexford

Course Overview

Basics of Computer Networks

- Internet & Protocol Stack
- Application Layer
- Transport Layer
- Network Layer
- Data Link Layer

Advanced Topics

- Case Studies of Computer Networks
- Internet Applications
- Network Management
- Network Security

Content Distribution Networks

Single server

- Single point of failure
- Easily overloaded
- Far from most clients

Popular content

- Popular site
- "Flash crowd" (aka "Slashdot effect")
- Denial of Service attack

Skewed Popularity of Web Traffic

4

Proxy Caches

- Reactively replicates popular content
- Smaller round-trip times to clients
- Reduces load on origin servers
- Reduces network load, and bandwidth costs
- Maintain persistent TCP connections

origin server

Forward Proxy

- Cache close to the client
 - Improves client performance
 - Reduces network provider's costs
- Explicit proxy
 - Requires configuring browser
- Implicit proxy
 - Service provider deploys an "on path" proxy
 - ... that intercepts and handles Web requests

Reverse Proxy

Cache close to server

- Improve client performance
- Reduce content provider cost
- Load balancing, content assembly, transcoding, etc.

Directing clients to the proxy

 Map the site name to the IP address of the proxy

Reverse Proxy

Cache close to server

- Improve client performance
- Reduce content provider cost
- Load balancing, content assembly, transcoding, etc.

Directing clients to the proxy

 Map the site name to the IP address of the proxy

Limitations of Web Caching

- Much content is not cacheable
 - Dynamic data
 - Stock prices, scores, web cams
 - CGI scripts R
 - Results depend on parameters
 - Cookies
 - Results may depend on passed data
 - SSL
 - Encrypted data is not cacheable
 - Analytics
 - Owner wants to measure hits
- Stale data or overhead of refreshing the cached data

Content Distribution Network

- Proactive content replication
 - Content provider (e.g., CNN) contracts with a CDN
- CDN replicates the content
 - On many servers spread throughout the Internet
- Updating the replicas
 - Updates pushed to replicas when the content changes

origin server in North America **CDN** distribution node **CDN** server **CDN** server in S. America **CDN** server in Asia in Europe

Server Selection Policy

- Live server
 - For availability

Requires continuous monitoring of liveness, load, and performance

- Lowest load
 - To balance load across the servers
- Closest
 - Nearest geographically, or in round-trip time
- Best performance
 - Throughput, latency, ...
- Cheapest bandwidth, electricity, ...

Server Selection Mechanism

- Application
 - HTTP redirection
- Advantages
 - Fine-grain control
 - Selection based on client IP address
- Disadvantages
 - Extra round-trips for TCP connection to server
 - Overhead on the server

GET

Server Selection Mechanism

- Routing
 - Anycast routing
- Advantages
 - No extra round trips
 - Route to nearby server
- Disadvantages
 - Does not consider network or server load
 - Different packets may go to different servers
 - Used only for simple request-response apps

Server Selection Mechanism

- Naming
 - DNS-based server selection
- Advantages
 - Avoid TCP set-up delay
 - DNS caching reduces overhead
 - Relatively fine control
- Disadvantage
 - Based on IP address of local DNS server
 - "Hidden load" effect
 - DNS TTL limits adaptation

Example: Akamai

- Distributed servers
 - Servers: ~61,000
 - Networks: ~1,000
 - Countries: ~70
- Many customers
 - Apple, BBC, FOX, GM IBM, MTV, NASA, NBC, NFL, NPR, Puma, Red Bull, Rutgers, SAP, ...
- Client requests
 - Hundreds of billions per day
 - Half in the top 45 networks
 - 15-20% of all Web traffic worldwide

Mapping System

- Equivalence classes of IP addresses
 - IP addresses experiencing similar performance
 - Quantify how well they connect to each other
- Collect and combine measurements
 - Ping, traceroute, BGP routes, server logs
 - E.g., over 100 TB of logs per days
 - Network latency, loss, and connectivity
- Map each IP class to a preferred server cluster
 - Based on performance, cluster health, etc.
 - Updated roughly every minute
- Map client request to a server in the cluster
 - Load balancer selects a specific server
 - E.g., to maximize the cache hit rate

Adapting to Failures

- Failing hard drive on a server
 - Suspends after finishing "in progress" requests
- Failed server
 - Another server takes over for the IP address
 - Low-level map updated quickly
- Failed cluster
 - High-level map updated quickly
- Failed path to customer's origin server
 - Route packets through an intermediate node

Akamai Transport Optimizations

- Bad Internet routes
 - Overlay routing through an intermediate server
- Packet loss
 - Sending redundant data over multiple paths
- TCP connection set-up/teardown
 - Pools of persistent connections
- TCP congestion window and round-trip time
 - Estimates based on network latency measurements

Akamai Application Optimizations

- Slow download of embedded objects
 - Prefetch when HTML page is requested
- Large objects
 - Content compression
- Slow applications
 - Moving applications to edge servers
 - E.g., content aggregation and transformation
 - E.g., static databases (e.g., product catalogs)
 - E.g. batching and validating input on Web forms

Conclusion

- Content distribution is hard
 - Many, diverse, changing objects
 - Clients distributed all over the world
 - Reducing latency
- Contribution distribution solutions
 - Reactive caching
 - Proactive content distribution networks