DATA COMMUNICATON NETWORKING

Instructor: Ouldooz Baghban Karimi

Course Book & Slides:

Computer Networking, A Top-Down Approach By: Kurose, Ross

Course Overview

Basics of Computer Networks

- Internet & Protocol Stack
- Application Layer
- Transport Layer
- Network Layer
- Data Link Layer

Advanced Topics

- Case Studies of Computer Networks
- Internet Applications
- Network Management
- Network Security

Random Access Protocols

When node has packet to send

- transmit at full channel data rate R.
- no a priori coordination among nodes

Two or more transmitting nodes

Collision

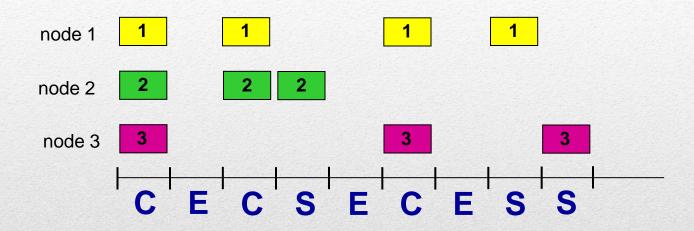
Random access MAC protocol

- How to detect collisions
- How to recover from collisions

Examples of random access MAC protocols

- slotted ALOHA
- ALOHA
- CSMA, CSMA/CD, CSMA/CA

Slotted Aloha


Assumptions:

- All frames same size
- Time divided into equal size slots (time to transmit 1 frame)
- Nodes start to transmit only slot beginning
- Nodes are synchronized
- If 2 or more nodes transmit in slot, all nodes detect collision

Operation:

- When node obtains fresh frame, transmits in next slot
 - If no collision: node can send new frame in next slot
 - If collision: node retransmits frame in each subsequent slot with probability p until success

Slotted Aloha

Pros

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

Cons

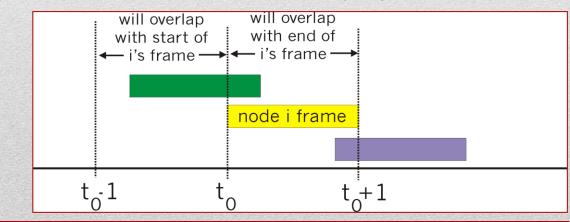
- Collisions, wasting slots
- Idle slots
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

Slotted Aloha Efficiency

- Suppose: N nodes with many frames to send, each transmits in slot with probability p
- Probability that given node has success in a slot = $p(1-p)^{N-1}$
- Probability that any node has a success = Np(1-p)^{N-1}
- Max efficiency: find p* that maximizes Np(1-p)^{N-1}
- For many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

max efficiency = 1/e = 0.37

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)


Pure (Un-Slotted) Aloha

Unslotted Aloha

- Simpler
- No synchronization
- Frame arrival
 - Transmit immediately

Collision probability increases

• Frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

Pure Aloha Efficiency

- P(success by given node) = P(node transmits).
- P(no other node transmits in $[t_0-1,t_0]$.
- P(no other node transmits in $[t_0-1,t_0]$

$$= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$

= p \cdot (1-p)^{2(N-1)} \low \cdot \

... choosing optimum p and then letting n

$$= 1/(2e) = .18$$

even worse than slotted Aloha!

CSMA

Carrier Sense Multiple Access

- Listen before transmit
 - If channel sensed idle
 - Transmit entire frame
 - If channel sensed busy
 - Defer transmission
- Human analogy: don't interrupt others!

CSMA Collisions

Collisions can still occur

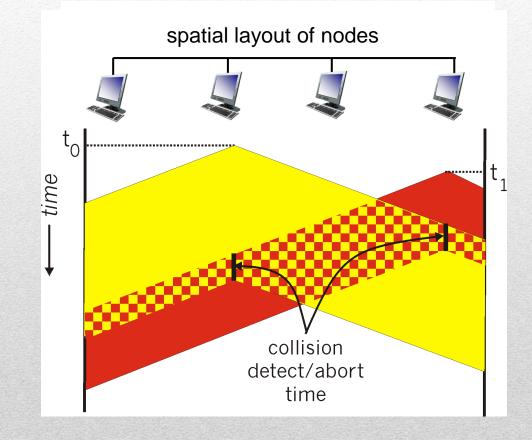
 Propagation delay means two nodes may not hear each other's transmission

When Collision Happens

- Entire packet transmission time wasted
- Distance & propagation delay play role in in determining collision probability

CSMA / CD

- Carrier sensing, deferral as in CSMA
- Collisions detected within short time
- Colliding transmissions aborted, reducing channel wastage


CD: Collision detection

- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs: received signal strength overwhelmed by local transmission strength

Human analogy

The polite conversationalist

CSMA / CD

Ehternet CSMA / CD Algorithm

- NIC receives datagram from network layer, creates frame
- If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- If NIC transmits entire frame without detecting another transmission, NIC is done with frame !
- If NIC detects another transmission while transmitting, aborts and sends jam signal
- After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K·512 bit times, returns to Step 2
 - longer backoff interval with more collisions

CSMA / CD Efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- Efficiency goes to 1
 - As t_{prop} goes to 0
 - As t_{trans} goes to infinity
- Better performance than ALOHA
 - Simple
 - Cheap
 - Decentralized!

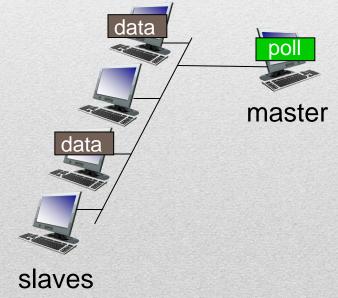
Taking Turns MAC Protocols

Channel partitioning MAC protocols

- Share channel efficiently and fairly at high load
- Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

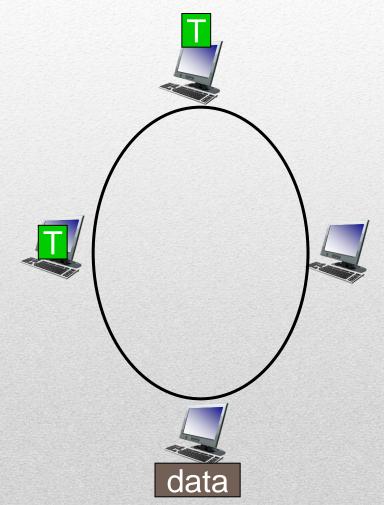
- Efficient at low load: single node can fully utilize channel
- High load: collision overhead

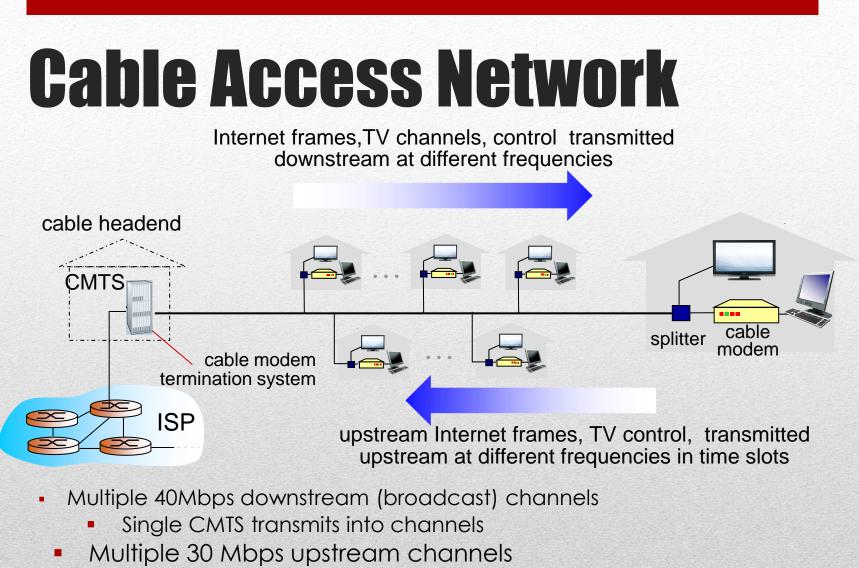

Taking turns protocols

Look for best of both worlds!

Taking Turns MAC Protocols

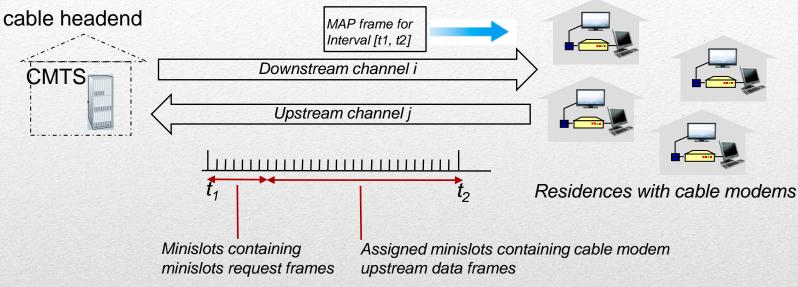
Polling:


- Master node "invites" slave nodes to transmit in turn
- Typically used with "dumb" slave devices
- Concerns:
 - Polling overhead
 - Latency
 - Single point of failure (master)



Taking Turns MAC Protocols

Token passing

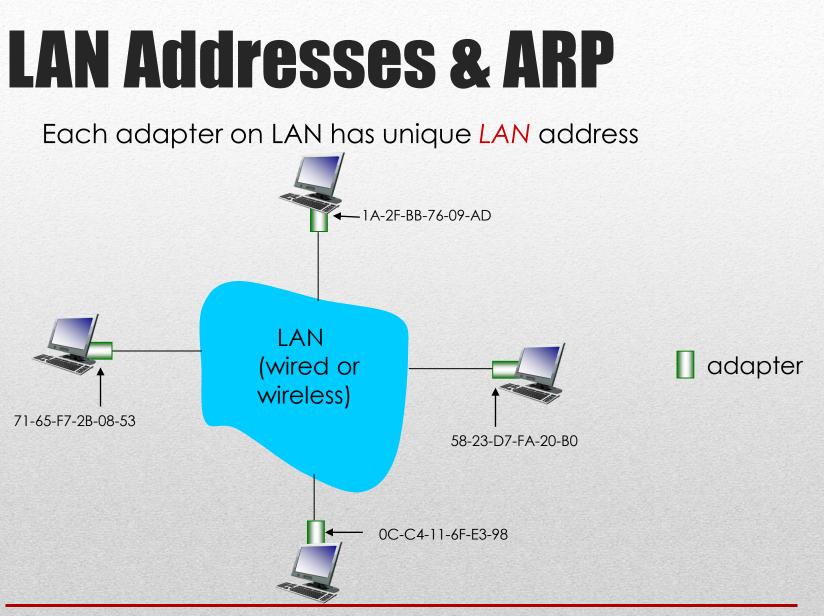

- Control token passed from one node to next sequentially.
- Token message
- Concerns:
 - Token overhead
 - Latency
 - Single point of failure (token)

 Multiple access: all users contend for certain upstream channel time slots (others assigned)

Cable Access Network

- DOCSIS: data over cable service interface spec
- FDM over upstream, downstream frequency channels
- TDM upstream: some slots assigned, some have contention
 - Downstream MAP frame: assigns upstream slots
 - Request for upstream slots (and data) transmitted random access (binary backoff) in selected slots

MAC Protocols

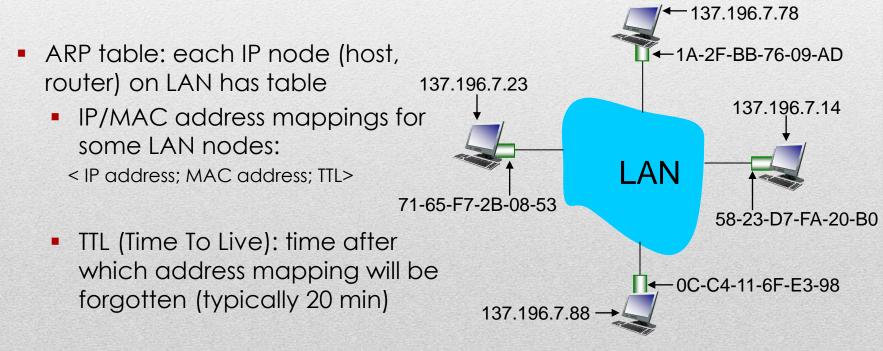

- Channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- Random access (dynamic)
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11

Taking turns

- polling from central site, token passing
- bluetooth, FDDI, token ring

MAC Address & ARP

- 32-bit IP address
 - Network-layer address for interface
 - Used for layer 3 (network layer) forwarding
- MAC (or LAN or physical or Ethernet) address:
 - Function: used 'locally" to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD
 - hexadecimal (base 16) notation
 - (each "number" represents 4 bits)

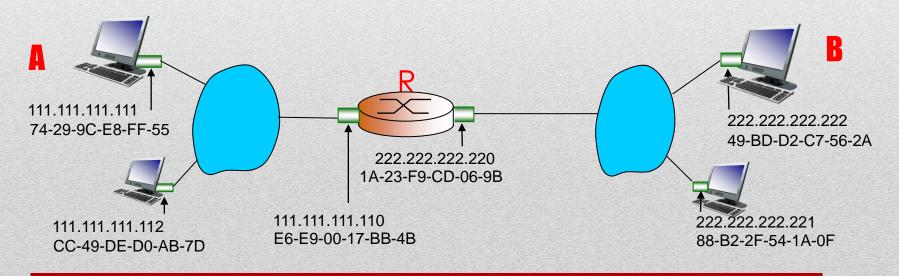


LAN Addresses

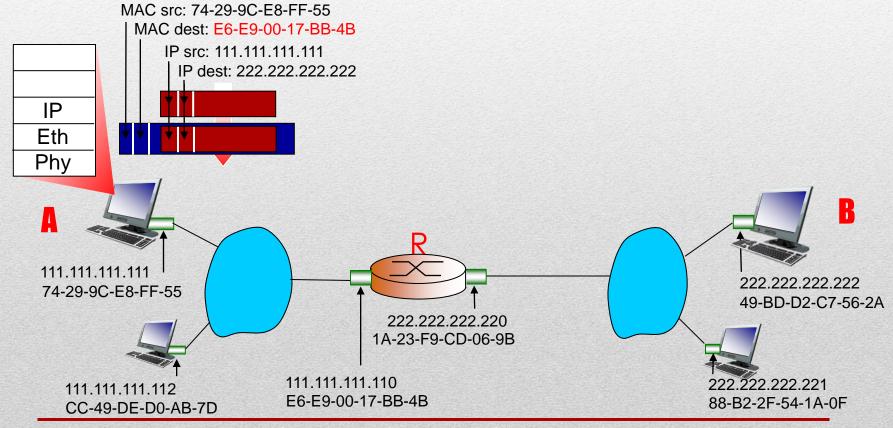
- MAC address allocation administered by IEEE
- Manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address → portability
 - Can move LAN card from one LAN to another
- IP hierarchical address not portable
 - Address depends on IP subnet to which node is attached

ARP: Address Resolution Protocol

Question: how to determine interface's MAC address, knowing its IP address?

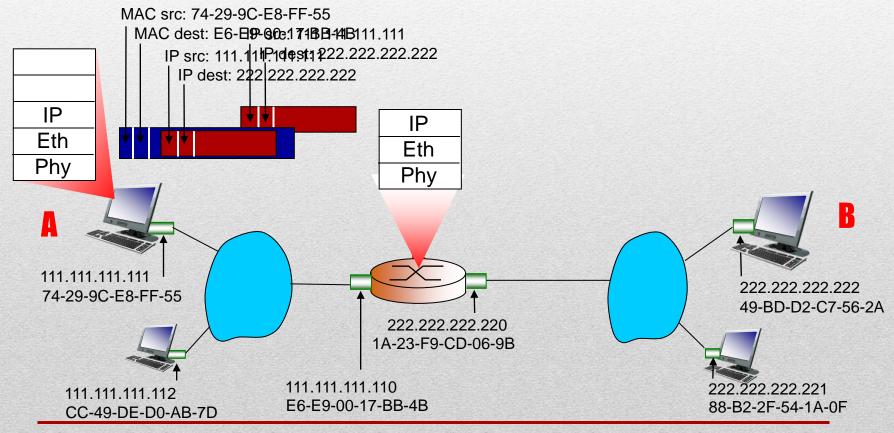


ARP Protocol: Same LAN

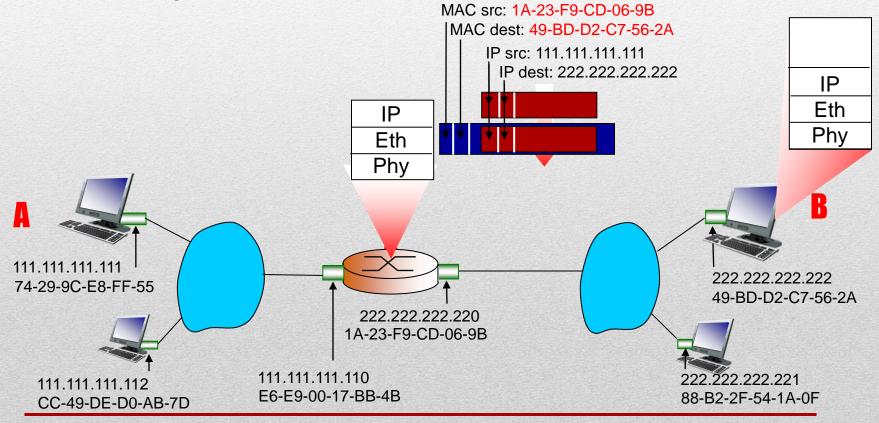

- A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - Destination MAC address = FF-FF-FF-FF-FF
 - All nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - Frame sent to A's MAC address (unicast)
- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - Soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - Nodes create their ARP tables without intervention from net administrator

Walkthrough: send datagram from A to B via R

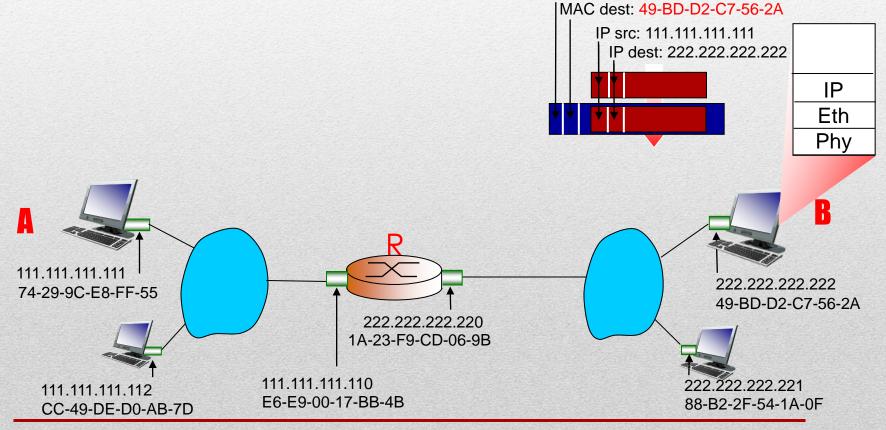
- Focus on addressing at IP (datagram) and MAC layer (frame)
- Assume A knows B's IP address
- Assume A knows IP address of first hop router, R (how?)
- Assume A knows R's MAC address (how?)



- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram



Link Layer


- Frame sent from A to R
- Frame received at R, datagram removed, passed up to IP

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains Ato-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram
 MAC src: 1A-23-F9-CD-06-9B

