
 1

Chapter 3
Transport Layer

 2

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 Principles of congestion control

3.7 TCP congestion control

 3

Principles of Congestion Control

Congestion:

• informally: “too many sources sending too much data too
fast for network to handle”

• different from flow control!
• manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

• a top-10 problem!

 4

Causes/costs of congestion: scenario 1
• Two senders, two
receivers
• One router, infinite
buffers
• no retransmission

- Large delays when
congested
- Maximum achievable
throughput

unlimited shared output
link buffers

Host A
λin : original data

Host B

λout

 5

- one router, finite buffers
- sender retransmission of timed-out packet

application-layer input = application-layer output: λin = λout

transport-layer input includes retransmissions : λin λin

Causes/costs of congestion: scenario 2

finite shared output link
buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus

retransmitted data

‘

 6

Congestion scenario 2a: ideal case

- sender sends only when router
buffers available

finite shared output link
buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus

retransmitted data

copy

free buffer space!

 7

Congestion scenario 2a: ideal case

- sender sends only when router
buffers available

finite shared output link
buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus

retransmitted data

R/2

R/2λin

λ
out

free buffer space!

 8

Host A

λin : original data

Host B

λoutλ'in: original data, plus

retransmitted data

copy

- Packets may get dropped at router due to full buffers
 - Sometimes lost

- Sender only resends if packet known to be lost (admittedly idealized)

Congestion scenario 2b: known loss

 9

Congestion scenario 2b: known loss

Host A

λin : original data

Host B

λoutλ'in: original data, plus

retransmitted data

free buffer space!

packets may get dropped at router due to
full buffers
sometimes not lost

sender only resends if packet known to be
lost (admittedly idealized)

R/2

R/2λin

λ
out

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

 10

- packets may get dropped at router
due to full buffers
- sender times out prematurely,
sending two copies, both of which
are delivered

Host A

λin

Host B

λoutλ'in
copy

free buffer space!

Congestion scenario 2c: duplicates

 11

- packets may get dropped at router
due to full buffers
- sender times out prematurely,
sending two copies, both of which
are delivered

Host A

λin

Host B

λoutλ'in
copy

free buffer space!

Congestion scenario 2c: duplicates

timeou
t

 12

- packets may get dropped at router
due to full buffers
- sender times out prematurely,
sending two copies, both of which
are delivered

Congestion scenario 2c: duplicates

R/4

λ
out when sending at

R/2, some packets
are retransmissions
including duplicated
that are delivered!

“costs” of congestion:
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple copies of pkt

 decreasing goodput

R/2λin

 13

Causes/costs of congestion: scenario 3
- four senders
- multihop paths
- timeout/retransmit

λ
in

Q: what happens as
 and
increase ?

λ
in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

 14

Causes/costs of congestion: scenario 3

another “cost” of congestion:
 when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

H
o
st
A

H
o
st
B

λ
o

u

t

 15

Approaches towards congestion control

end-end congestion control:
• no explicit feedback from

network
• congestion inferred from end-

system observed loss, delay
• approach taken by TCP

network-assisted congestion
control:

• routers provide feedback to end
systems

• single bit indicating congestion (SNA,
DECbit, TCP/IP ECN, ATM)

• explicit rate sender should send at

Two broad approaches towards congestion
control:

 16

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 Principles of congestion control

3.7 TCP congestion control

 17

TCP congestion control: additive increase,
multiplicative decrease

8 K b y t e s

1 6 K b y t e s

2 4 K b y t e s

t i m e

c o n g e s t i o n
w i n d o w

 approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs
 additive increase: increase cwnd by 1 MSS every RTT until

loss detected
 multiplicative decrease: cut cwnd in half after loss

time

c
w
n
d

: congestion w
indow

 size

saw tooth
behavior: probing

for bandwidth

 18

TCP Congestion Control: details

sender limits transmission:
 LastByteSent-LastByteAcked

 ≤ cwnd
roughly,

cwnd is dynamic, function of perceived
network congestion

How does sender perceive
congestion?

• loss event = timeout or 3
duplicate acks

• TCP sender reduces rate
(cwnd) after loss event

rate =
cwnd

RTT
Bytes/sec

 19

TCP Slow Start

• when connection begins,
increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd for
every ACK received

summary: initial rate is slow
but ramps up exponentially
fast

Host A

one segmentR
T
T

Host B

time

two segments

four segments

 20

Refinement

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to 1/2
of its value before
timeout.

Implementation:
• variable ssthresh
• on loss event, ssthresh is set

to 1/2 of cwnd just before loss
event

 21

Refinement: inferring loss

• after 3 dup ACKs:
– cwnd is cut in half
– window then grows linearly

• but after timeout event:
– cwnd instead set to 1 MSS;
– window then grows exponentially
– to a threshold, then grows linearly

 3 dup ACKs indicates
network capable of
delivering some segments
 timeout indicates a
“more alarming”
congestion scenario

Philosophy:

 22

Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++

duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

Λ
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

 23

TCP throughput

• what’s the average throughout of TCP as a
function of window size and RTT?

– ignore slow start
• let W be the window size when loss occurs.

– when window is W, throughput is W/RTT
– just after loss, window drops to W/2, throughput to

W/2RTT.
– average throughout: .75 W/RTT

 24

TCP Futures: TCP over “long, fat pipes”

• example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput
• requires window size W = 83,333 in-flight segments
• throughput in terms of loss rate:

•➜ L = 2·10-10 Wow – a very small loss rate!
• new versions of TCP for high-speed

1.22⋅MSS
RTT L

 25

fairness goal: if K TCP sessions share same bottleneck link
of bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

 26

Why is TCP fair?

two competing sessions:
• additive increase gives slope of 1, as throughout increases
• multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
o
n
n
e
ctio

n
 2

 th
ro

u
g
h
p
u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

 27

Fairness (more)

Fairness and UDP
• multimedia apps often do

not use TCP
– do not want rate throttled by

congestion control
• instead use UDP:

– pump audio/video at constant
rate, tolerate packet loss

Fairness and parallel TCP
connections

nothing prevents app from
opening parallel connections
between 2 hosts.

web browsers do this
example: link of rate R supporting

9 connections;
new app asks for 1 TCP, gets rate R/10
new app asks for 11 TCPs, gets R/2 !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

