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Chapter 3
Transport Layer
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Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 Principles of congestion control

3.7 TCP congestion control
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Principles of Congestion Control

Congestion:

•  informally: “too many sources sending too much data too 
fast for network to handle”

•  different from flow control!
•  manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

•  a top-10 problem!
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Causes/costs of congestion: scenario 1 
• Two senders, two 
receivers
• One router, infinite 
buffers 
• no retransmission

- Large delays when 
congested
- Maximum achievable 
throughput

unlimited shared output 
link buffers

Host A
λin : original data

Host B

λout
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- one router, finite buffers 
- sender retransmission of timed-out packet

application-layer input = application-layer output: λin = λout

transport-layer input includes retransmissions : λin    λin

Causes/costs of congestion: scenario 2 

finite shared output link 
buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus 

retransmitted data

‘
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Congestion scenario 2a: ideal case  

- sender sends only when router 
buffers available 

finite shared output link 
buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus 

retransmitted data

copy

free buffer space!
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Congestion scenario 2a: ideal case  

- sender sends only when router 
buffers available 

finite shared output link 
buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus 

retransmitted data

R/2

R/2λin

λ
out

free buffer space!
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Host A

λin : original data

Host B

λoutλ'in: original data, plus 

retransmitted data

copy

- Packets may get dropped at router due  to full buffers
     - Sometimes lost

- Sender only resends if packet known to be lost (admittedly idealized) 

Congestion scenario 2b: known loss  
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Congestion scenario 2b: known loss  

Host A

λin : original data

Host B

λoutλ'in: original data, plus 

retransmitted data

free buffer space!

packets may get dropped at router due  to 
full buffers
sometimes not lost

sender only resends if packet known to be 
lost (admittedly idealized) 

R/2

R/2λin

λ
out

when sending at R/2, 
some packets are 
retransmissions but 
asymptotic goodput 
is still R/2 (why?)
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- packets may get dropped at router 
due  to full buffers
- sender times out prematurely, 
sending two copies, both of which 
are delivered

Host A

λin

Host B

λoutλ'in
copy

free buffer space!

Congestion scenario 2c: duplicates  
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- packets may get dropped at router 
due  to full buffers
- sender times out prematurely, 
sending two copies, both of which 
are delivered

Host A

λin

Host B

λoutλ'in
copy

free buffer space!

Congestion scenario 2c: duplicates  

timeou
t
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- packets may get dropped at router 
due  to full buffers
- sender times out prematurely, 
sending two copies, both of which 
are delivered

Congestion scenario 2c: duplicates  

R/4

λ
out when sending at 

R/2, some packets 
are retransmissions 
including duplicated 
that are delivered!

“costs” of congestion: 
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple copies of pkt

 decreasing goodput

R/2λin
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Causes/costs of congestion: scenario 3 
- four senders
- multihop paths
- timeout/retransmit

λ
in

Q: what happens as  
    and     
increase ?

λ
in

finite shared output 
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus 
retransmitted data
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Causes/costs of congestion: scenario 3 

another “cost” of congestion: 
 when packet dropped, any “upstream transmission 

capacity used for that packet was wasted!

H
o
st 
A

H
o
st 
B

λ
o

u

t
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Approaches towards congestion control

end-end congestion control:
•   no explicit feedback from 

network
•  congestion inferred from end-

system observed loss, delay
•  approach taken by TCP

network-assisted congestion 
control:

•  routers provide feedback to end 
systems

•  single bit indicating congestion (SNA, 
DECbit, TCP/IP ECN, ATM)

•  explicit rate sender should send at

Two broad approaches towards congestion 
control:
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Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 Principles of congestion control

3.7 TCP congestion control
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TCP congestion control: additive increase, 
multiplicative decrease

8  K b y t e s

1 6  K b y t e s

2 4  K b y t e s

t i m e

c o n g e s t i o n
w i n d o w

 approach: increase transmission rate (window size), 
probing for usable bandwidth, until loss occurs
 additive increase: increase  cwnd by 1 MSS every RTT until 

loss detected
 multiplicative decrease: cut cwnd in half after loss 

time

c
w
n
d

: congestion w
indow

 size

saw tooth
behavior: probing

for bandwidth
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TCP Congestion Control: details

sender limits transmission:
  LastByteSent-LastByteAcked

                   ≤ cwnd
roughly,

cwnd is dynamic, function of perceived 
network congestion

How does  sender perceive 
congestion?

•  loss event = timeout or 3 
duplicate acks

•  TCP sender reduces rate 
(cwnd) after loss event

rate = 
cwnd 

RTT 
Bytes/sec
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TCP Slow Start 

• when connection begins, 
increase rate exponentially 
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd for 
every ACK received

summary: initial rate is slow 
but ramps up exponentially 
fast

Host A

one segmentR
T
T

Host B

time

two segments

four segments
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Refinement

Q: when should the 
exponential increase 
switch to linear? 

A: when cwnd gets to 1/2 
of its value before 
timeout.

 

Implementation:
•  variable ssthresh 
•  on loss event, ssthresh is set 

to 1/2 of cwnd just before loss 
event
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Refinement: inferring loss

• after 3 dup ACKs:
– cwnd is cut in half
– window then grows linearly

• but after timeout event:
– cwnd instead set to 1 MSS; 
– window then grows exponentially
– to a threshold, then grows linearly

 3 dup ACKs indicates 
network capable of 
delivering some segments
 timeout indicates a 
“more alarming” 
congestion scenario

Philosophy:
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Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment 

Λ
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++

duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment 

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout

ssthresh = cwnd/2 
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment 

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

Λ
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0
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TCP throughput

• what’s the average throughout of TCP as a 
function of window size and RTT?

– ignore slow start
• let W be the window size when loss occurs.

– when window is W, throughput is W/RTT
– just after loss, window drops to W/2, throughput to 

W/2RTT. 
– average throughout: .75 W/RTT



 24

TCP Futures: TCP over “long, fat pipes”

• example: 1500 byte segments, 100ms RTT, want 10 Gbps 
throughput
• requires window size W = 83,333 in-flight segments
• throughput in terms of loss rate:

•➜ L = 2·10-10  Wow – a very small loss rate!
• new versions of TCP for high-speed

1.22⋅MSS
RTT L
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fairness goal: if K TCP sessions share same bottleneck link 
of bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2

TCP Fairness
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Why is TCP fair?

two competing sessions:
• additive increase gives slope of 1, as throughout increases
• multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

C
o
n
n
e
ctio

n
 2

 th
ro

u
g
h
p
u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Fairness (more)

Fairness and UDP
• multimedia apps often do 

not use TCP
– do not want rate throttled by 

congestion control
• instead use UDP:

– pump audio/video at constant 
rate, tolerate packet loss

Fairness and parallel TCP 
connections

nothing prevents app from 
opening parallel connections 
between 2 hosts.

web browsers do this 
example: link of rate R supporting 

9 connections; 
new app asks for 1 TCP, gets rate R/10
new app asks for 11 TCPs, gets R/2 !
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