Chapter 3
Transport Layer

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP
*+ segment structure

+ reliable data transfer
+ flow control
* connection management

3.6 Principles of congestion control
3.7 TCP congestion control

TCP: Overview recs 793, 1122, 1323, 2018, 2581

* point-to-point:
* one sender, one receiver
* reliable, in-order byte
steam.:
° no “message boundaries”
* pipelined:

* TCP congestion and flow
control set window size

 send & receive buffers

socket

; socket
oor ;

door

TCP
receive buffer

) Gegnent] —» ()

TCP
send buffer

full duplex data:

bi-directional data flow in
same connection

MSS: maximum segment
Size

connection-oriented:

handshaking (exchange of
control msgs) inits sender,
receiver state before data

exchange

flow controlled:

sender will not overwhelm
receiver

TCP segment structure

32 bits

URG: urgent data
(generally not used‘)\

source port #

dest port #

ounting
by bytes

\ segquence number

of data

(not segments!)

ACK: ACK #
valid cknowledgement number
head| not 1 . .
PSH: push data now | len fused [9]AP[RIS|F| Receive window
(generally not use cheeksy J Urg data pnter

RST, SYN, FIN~"|
connection estab

Opti

s (variable length)

to accept

(setup, teardown
commands)

Internit/
checksu

(as in UDP)

7

application
data
(variable length)

TCP seq. #'s and ACKs

=ed. 45 @ Host A Host B @
* byte stream “number”
of first byte in User Segeqy
segment’s data tXFé‘?S %
ACKSs: host ACKs
- seq # of next byte . ‘(rie’cgicphto(zzfs
expected from other back ‘C’
side
* cumulative ACK
Q: how receiver handles out- host ACKs

receipt
of-order segments P

of echoed "3 Ack=g,
* A TCP spec doesn't ‘C’ \
say, - up to

implementor
time
simple telnet scenario

TCP Round Trip Time and Timeout
Q: how to set TCP timeout value?

* longer than RTT
* but RTT varies

* too short: premature timeout
* unnecessary retransmissions
* too long: slow reaction to segment loss

TCP Round Trip Time and Timeout

Q: how to estimate RTT?

* SampleRTT: measured time from segment transmission until ACK
receipt

° ignore retransmissions
* SampleRTT will vary, want estimated RTT “smoother”
* average several recent measurements, not just current SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

* Exponential weighted moving average
* influence of past sample decreases exponentially fast
“ typical value: a =0.125

Example RTT estimation:

350 +

300

RTT (milliseconds)
N
a1
o

N
o
o

150

100

RTT: gaia.cs.uness.edu to fantasiaeurecomfir

15 22 29 36 43 50 57 64 71 78 85 92
time (seconnds)

—o— SampleRTT —®— Estimated RTT

99

106

TCP Round Trip Time and Timeout

Setting the timeout

 EstimatedRTT plus “safety margin”
large variation in EstimatedRTT -> larger safety margin
* first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

10

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP
*+ segment structure

*+ reliable data transfer
+ flow control
* connection management

3.6 Principles of congestion control
3.7 TCP congestion control

11

TCP sender events:

data rcvd from app: timeout:

* Create segment with seq * retransmit segment that
caused timeout

* seq # is byte-stream * restart timer
number of first data byte Ack revd:
In segmen.t e If acknowledges

* start timer if not already previously unacked
running (think of timer as segments
for oldest unacked * update what is known to be
segment) acked

e expiration interval: * start timer if there are

TimeOutInterval outstanding segments

12

NextSeqNum = InitialSeqNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} * end of loop forever */

TCP

sender
(simplified)

Comment:

* SendBase-1: last
cumulatively
acked byte
Example:

* SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

13

TCP: retransmission scenarios

@ Host A

+— timeout ——

SendBase
=100

Seq=~
_200
Ay
X

loss

Seq=g
2, 8 bytes data

lost ACK scenario

Host B@

SendBase
=100
SendBase
=120

SendBase
=120

92 timeout—»l

— Seq

92 timeout

eq=

n
s |

v premature timeout
time

14

TCP retransmission scenarios (more)

@ Host A @

timeout ———
%)
D
QO
1]

%}
o
.

SendBase
=120

time
Cumulative ACK scenario

4

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Recelver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKIing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap
16

Fast Retransmit

* time-out period often * If sender receives 3 ACKs
relatively long: for the same data, it
* long delay before resending supposes that segment
lost packet after ACKed data was lost:
* detect lost segments via « fast retransmit: resend
duplicate ACKSs. segment before timer expires

* sender often sends many
segments back-to-back

* if segment is lost, there will
likely be many duplicate
ACKSs.

17

Host A Host B

timeout

2na g
W

'

time

—_—

Figure 3.37 Resending a segment after triple duplicate ACK 10

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
iIf (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

y

}

/ \
already ACKed segment

19

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP
*+ segment structure

+ reliable data transfer
* flow control
* connection management

3.6 Principles of congestion control
3.7 TCP congestion control

20

TCP Flow Control

_ flow control
. . sender won't overflow
receive _S'de of TCP _ receiver’s buffer by
connection has a receive transmitting too much,
buffer: too fast
#—Rcv\%’indow —n|-

7

* speed-matching service:
/ // application

data from

ol T process matching the send rate to
//// the receiving app’s drain
#—— RevBuffer —————# rate

o%

* app process may be

slow at reading from
buffer

21

TCP Flow control: how 1t works
f— RevWindow —

* rcvr advertises spare room
?/ ?2 aplication BY INcluding value of

data from

P > process RcvWindow in segments
//// * sender limits unACKed
fF——— RoevBuffer ——— data to RcvWindow
(suppose TCP receiver discards * guarantees recelve buffer

n’'t overflow
out-of-order segments) doesn't overflo

* spare room in buffer
= RcvWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

22

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP
*+ segment structure

+ reliable data transfer
+ flow control
* connection management

3.6 Principles of congestion control
3.7 TCP congestion control

23

TCP Connection Management

Recall: TCP sender, receiver Three way handshake:
establish “connection” before -
exchanging data segments Step 1: client host sends TCP SYN

segment to server
* specifies initial seq #

* |nitialize TCP variables:

° seq.#s
* Duffers, flow control info " hodata
(e.g. RevWindow) Step 2: server host receives SYN,
» client: connection initiator replies with SYNACK segment
Socket clientSocket = new * server allocates buffers

Socket ("hostname", "port - -
* specifies server initial seq. #

b n ; . .
number .) | Step 3: client receives SYNACK,
server. contac_ted by client replies with ACK segment, which
Socket connectionSocket = may contain data

welcomeSocket.accept();

24

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends
TCP FIN control segment to

server_

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

@ client

close

©
=
S
]
£
q-

close

FIN

pCt
/

SGFVGF@

close

25

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server@
replies with ACK.

closing
* Enters “timed wait” - will FIN
respond with ACK to

received FINs

ACK :
: closing
Step 4: server, receives ACK. N
Connection closed.

Note: with small modification, can

handle simultaneous FINs.
closed

-
©
=

©
()]
-

)

closed ™

26

TCP Connection Management (cont)

wait A0 seconds

CLOSED

TIME_WAIT

F 3

recere FIM
send ACK.

FIN_WAIT_2

receive ACK
send nothing

TCP client

lifecycle

client application
initiates a TCP connection

send SN

SYN_SENT

recerse 37N & ACK
send ACK.

¥

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIN CLOSED

receive ACK
send nothing

LAST_ACK
&

send FIM

CLOSE_WAIT

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SN
send SYM & ACK

¥

SYN_RCVD

receive FIN

ead AP0 ESTABLISHED

receive ACK
send nothing

27

	Slide 1
	Chapter 3 outline
	TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
	TCP segment structure
	TCP seq. #’s and ACKs
	TCP Round Trip Time and Timeout
	Slide 7
	Slide 8
	Example RTT estimation:
	Slide 10
	Slide 11
	TCP sender events:
	TCP sender (simplified)
	TCP: retransmission scenarios
	TCP retransmission scenarios (more)
	TCP ACK generation [RFC 1122, RFC 2581]
	Fast Retransmit
	Slide 72
	Fast retransmit algorithm:
	Slide 20
	TCP Flow Control
	TCP Flow control: how it works
	Slide 23
	TCP Connection Management
	TCP Connection Management (cont.)
	Slide 26
	TCP Connection Management (cont)

