
Chapter 2
Application Layer

Application 2-1

Chapter 2: Application layer
2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 Socket programming with TCP

2.8 Socket programming with UDP

Application 2-2

Pure P2P architecture

 No always-on server

 Arbitrary end systems
directly communicate

 Peers are intermittently
connected and change IP
addresses

Three topics:
 file distribution

 searching for information

 case Study: Skype

peer-peer

Application 2-3

File Distribution: Server-Client vs P2P

Question : How much time to distribute file from
one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth

ui: peer i upload
bandwidth

di: peer i download
bandwidth

Application 2-4

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver sequentially
sends N copies:

– NF/us time

client i takes F/di time to
download

Application 2-5

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver sequentially
sends N copies:

NF/us time

client i takes F/di time to
download

Application 2-6

= dcs = max { NF/us, F/min(di) }i

Time to distribute F
to N clients using
client/server approach

increases linearly in N
(for large N)

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F server must send one copy:
F/us time

 client i takes F/di time to
download

 NF bits must be downloaded
(aggregate)

 fastest possible upload rate: us + Σui

Application 2-7

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F server must send one copy:
F/us time

 client i takes F/di time to
download

 NF bits must be downloaded
(aggregate)

 fastest possible upload rate: us + Σui

dP2P = max { F/us, F/min(di) , NF/(us + Σui) }i

Application 2-8

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

P2P
Client-Server

N

M
in

im
um

 D
is

tr
ib

ut
io

n
T

im
e

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application 2-9

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

Application 2-10

BitTorrent (1)

 file divided into 256KB chunks.

 peer joining torrent:

has no chunks, but will accumulate them over time

registers with tracker to get list of peers, connects to
subset of peers (“neighbors”)

 while downloading, peer uploads chunks to other peers.

 peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain

Application 2-11

BitTorrent (2)

Pulling Chunks

 at any given time, different
peers have different
subsets of file chunks

 periodically, a peer (Alice)
asks each neighbor for list
of chunks that they have.

 Alice sends requests for
her missing chunks

rarest first

Sending Chunks: tit-for-tat
 Alice sends chunks to four

neighbors currently sending her
chunks at the highest rate
 re-evaluate top 4 every 10

secs
 every 30 secs: randomly select

another peer, starts sending
chunks
 newly chosen peer may join

top 4
 “optimistically unchoke”

Application 2-12

BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob

Application 2-13

BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers;

Bob reciprocates

Application 2-14

BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers;

Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

Application 2-15

Distributed Hash Table (DHT)

 DHT: distributed P2P database

 database has (key, value) pairs;

key: ss number; value: human name

key: content type; value: IP address

 peers query DB with key

DB returns values that match the key

 peers can also insert (key, value) peers

Application 2-16

DHT Identifiers

 Assign integer identifier to each peer in range [0,2n-1].

Each identifier can be represented by n bits.

 Require each key to be an integer in same range.

 To get integer keys, hash original key.

e.g., key = h(“Led Zeppelin IV”)

this is why they call it a distributed “hash” table

Application 2-17

How to assign keys to peers?

 central issue:

assigning (key, value) pairs to peers.

 rule: assign key to the peer that has the closest ID.

 convention in lecture: closest is the immediate successor of
the key.

e.g.,: n=4; peers: 1,3,4,5,8,10,12,14;

key = 13, then successor peer = 14

key = 15, then successor peer = 1

Application 2-18

1

3

4

5

8
10

12

15

Circular DHT (1)

 each peer only aware of immediate successor and
predecessor.

“overlay network”

Application 2-19

Circular DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Define closest
as closest
successor

Application 2-20

Circular DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

 Who’s resp
 for key 1110 ?

Define closest
as closest
successor

Application 2-21

Circular DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

 Who’s resp
 for key 1110 ?

I am

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Application 2-22

Circular DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

 Who’s resp
 for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Application 2-23

Circular DHT with Shortcuts

 Each peer keeps track of IP addresses of predecessor, successor,
short cuts.

8

Application 2-24

1

10

3

4

5
12

15

Who’s resp
for key 1110?
Who’s resp
for key 1110?

8

1
Circular DHT with Shortcuts

 Each peer keeps track of IP addresses of predecessor, successor,
short cuts.
 Reduced from 6 to 2 messages.
 Possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query

Application 2-25

10

3

4

5
12

15

Who’s resp
for key 1110?
Who’s resp
for key 1110?

8

Peer Churn
1

3

4

5

8
10

12

15

 To handle peer churn, require
each peer to know the IP address
of its two successors.

 Each peer periodically pings its
two successors to see if they

are still alive.

Application 2-26

Peer Churn

 peer 5 abruptly leaves
 Peer 4 detects; makes 8 its immediate successor;

asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

1

3

4

5

8
10

12

15

 To handle peer churn, require
each peer to know the IP address
of its two successors.

 Each peer periodically pings its
two successors to see if they

are still alive.

Application 2-27

Chapter 2: Application layer

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 Socket programming with TCP

2.8 Socket programming with UDP

Application 2-28

Socket programming

Socket API
 introduced in BSD4.1 UNIX,
1981

 explicitly created, used,
released by apps

 client/server paradigm

 two types of transport
service via socket API:

unreliable datagram

reliable, byte stream-
oriented

a host-local,
application-created,
OS-controlled interface (a
“door”) into which
application process can
both send and
receive messages to/from
another application process

socket

Goal: learn how to build client/server application that
communicate using sockets

Application 2-29

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one process
to another

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

Application 2-30

Socket programming with TCP

Client must contact server

 server process must first be
running

 server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:

 creating client-local TCP
socket

 specifying IP address, port
number of server process

 when client creates socket:
client TCP establishes
connection to server TCP

Application 2-31

Socket programming with TCP

Client must contact server

 server process must first be
running

 server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:

 creating client-local TCP
socket

 specifying IP address, port
number of server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client, server
TCP creates new socket for server
process to communicate with client

allows server to talk with multiple
clients

source port numbers used to
distinguish clients (more in Chap
3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

Application 2-32

Client/server socket interaction: TCP

Server (running on hostid) Client

Application 2-33

Client/server socket interaction: TCP

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

Server (running on hostid) Client

Application 2-34

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

Server (running on hostid) Client

Application 2-35

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

Server (running on hostid) Client

Application 2-36

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

Server (running on hostid) Client

TCP
connection setup

Application 2-37

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

Server (running on hostid) Client

send request using
clientSocket

TCP
connection setup

Application 2-38

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Application 2-39

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Application 2-40

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client

process

client TCP
socket

Stream jargon

stream is a sequence of
characters that flow into or out
of a process.

input stream is attached to
some input source for the
process, e.g., keyboard or
socket.

output stream is attached to an
output source, e.g., monitor or
socket.

Application 2-41

Socket programming with TCP

Example client-server app:
1) client reads line from standard input (inFromUser stream) , sends

to server via socket (outToServer stream)

2) server reads line from socket

3) server converts line to uppercase, sends back to client

4) client reads, prints modified line from socket (inFromServer
stream)

Application 2-42

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Application 2-43

This package defines Socket()
and ServerSocket() classes

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

create
input stream

Application 2-44

This package defines Socket()
and ServerSocket() classes

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
clientSocket object

of type Socket,
connect to server

Application 2-45

This package defines Socket()
and ServerSocket() classes

Example: Java client (TCP)
import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
clientSocket object

of type Socket,
connect to server

Application 2-46

This package defines Socket()
and ServerSocket() classes

server port #

server name,
e.g., www.umass.edu

Example: Java client (TCP)
import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
clientSocket object

of type Socket,
connect to server

create
output stream

attached to socket

Application 2-47

This package defines Socket()
and ServerSocket() classes

server port #

server name,
e.g., www.umass.edu

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

create
input stream

attached to socket

send line
to server

read line
from server

Application 2-48

close socket
(clean up behind yourself!)

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Application 2-49

create
welcoming socket

at port 6789

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

wait, on welcoming
socket accept() method

for client contact create,
new socket on return

Application 2-50

create
welcoming socket

at port 6789

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

wait, on welcoming
socket accept() method

for client contact create,
new socket on return

Application 2-51

create
welcoming socket

at port 6789

create input
stream, attached

to socket

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

read in line
from socket

create output
stream, attached

to socket

write out line
to socket

end of while loop,
loop back and wait for
another client connection

Application 2-52

Chapter 2: Application layer

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 Socket programming with TCP

2.8 Socket programming with UDP

Application 2-53

Socket programming with UDP

UDP: no “connection” between
client and server

 no handshaking

 sender explicitly attaches IP
address and port of
destination to each packet

 server must extract IP
address, port of sender from
received packet

UDP: transmitted data may be
received out of order, or lost

application viewpoint:
UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

Application 2-54

Client/server socket interaction: UDP

Server (running on hostid)

create socket,
port= x.
serverSocket =
DatagramSocket()

Application 2-55

Client/server socket interaction: UDP

Server (running on hostid)

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
 clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

Application 2-56

Client/server socket interaction: UDP

Server (running on hostid)

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
 clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

Application 2-57

Client/server socket interaction: UDP

Server (running on hostid)

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
 clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-58

Client/server socket interaction: UDP

Server (running on hostid)

close
clientSocket

read datagram from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
 clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-59

Example: Java client (UDP)

se
n

d
P

a
ck

e
t

to network from network

re
ce

iv
e

P
a

ck
e

t

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends packet
(recall that TCP sent
“byte stream”)

Input: receives packet
(recall thatTCP
received “byte stream”)

Client

process

client UDP
socket

Application 2-60

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();

 sendData = sentence.getBytes();

create
input stream

create
client socket

translate
 hostname to IP
address using DNS

Application 2-61

Example: Java client (UDP), cont.

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);
 clientSocket.close();
 }

}

create datagram with
data-to-send,
length, IP addr, port

send datagram
to server

read datagram
from server

Application 2-62

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

create
datagram socket

at port 9876

create space for
received datagram

receive
datagram

Application 2-63

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

