
Chapter 2
Application Layer

Application 2-1

Chapter 2: Application layer

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 Socket programming with TCP

2.8 Socket programming with UDP

Application 2-2

Creating a network application
write programs that

 run on (different) end
systems

 communicate over network
 e.g., web server software

communicates with
browser software

No need to write software
for network-core devices
 network-core devices do

not run user applications

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

Application 2-3

Chapter 2: Application layer

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with TCP
2.8 Socket programming with UDP

Application 2-4

Application architectures

 client-server
 peer-to-peer (P2P)
 hybrid of client-server and P2P

Application 2-5

Client-server architecture
server:

 always-on host
 permanent IP address
 server farms for scaling

clients:
 communicate with server
 may be intermittently

connected
 may have dynamic IP

addresses
 do not communicate

directly with each other

client/server

Application 2-6

Pure P2P architecture

 no always-on server
 arbitrary end systems

directly communicate
 peers are

intermittently
connected and change
IP addresses

highly scalable but
difficult to manage

peer-peer

Application 2-7

Hybrid of client-server and P2P
Skype

 voice-over-IP P2P application
 centralized server: finding address of remote

party:
 client-client connection: direct (not through

server)
Instant messaging

 chatting between two users is P2P
 centralized service: client presence

detection/location
• user registers its IP address with central

server when it comes online
• user contacts central server to find IP

addresses of buddies

Application 2-8

Processes communicating

process: program
running within a host.

 within same host, two
processes
communicate using
inter-process
communication
(defined by OS).

 processes in different
hosts communicate
by exchanging
messages

client process: process
that initiates
communication

server process: process
that waits to be
contacted

 applications with P2P
architectures have
client processes &
server processes

Application 2-9

Sockets
 process sends/receives

messages to/from its socket
 socket analogous to door

 sending process send
message out door

 sending process relies on
transport infrastructure
on other side of door
which brings message to
socket at receiving
process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

 API: (1) choice of transport protocol; (2) ability to fix a few
parameters (lots more on this later)

Application 2-10

Addressing processes
 to receive messages, process must have

identifier
 host device has unique 32-bit IP address
 Q: does IP address of host on which process

runs suffice for identifying the process?

Application 2-11

Addressing processes
 to receive messages, process must have

identifier
 host device has unique 32-bit IP address
 Q: does IP address of host on which process

runs suffice for identifying the process?
– A : No, maybe there many processes

running on the end system

Application 2-12

Addressing processes
 identifier includes both IP address and port

numbers associated with process on host.
 example port numbers:

 HTTP server: 80
 Mail server: 25

 to send HTTP message to gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12
 Port number: 80

Application 2-13

App-layer protocol defines

 types of messages
exchanged,
 e.g., request, response

 message syntax:
 what fields in

messages & how fields
are delineated

 message semantics
 meaning of information

in fields
 rules for when and how

processes send & respond
to messages

public-domain protocols:
 defined in RFCs
 allows for interoperability
 e.g., HTTP, SMTP

proprietary protocols:
 e.g., Skype

Application 2-14

What transport service does an app need?

Data loss
 some apps (e.g., audio) can

tolerate some loss
 other apps (e.g., file transfer,

telnet) require 100% reliable
data transfer

Timing
 some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

Throughput
 some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

Security
 encryption, data integrity, …

Application 2-15

Transport service requirements of common
apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Application 2-16

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantees, security

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is there
a UDP?

Application 2-17

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

Application 2-18

Chapter 2: Application layer

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 Socket programming with TCP

2.8 Socket programming with UDP

Application 2-19

Web and HTTP

Review
 web page consists of objects
 object can be HTML file, JPEG image, Java applet,

audio file,…
 web page consists of base HTML-file which includes

several referenced objects
 each object is addressable by a URL
 example URL:

www.someschool.edu/someDept/pic.gif

host name path name

Application 2-20

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model
 client: browser that

requests, receives,
“displays” Web
objects

 server: Web server
sends objects in
response to requests

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP re
quest

HTTP response

HTTP re
sponse

Application 2-21

HTTP overview (continued)

Uses TCP:
 client initiates TCP

connection (creates
socket) to server, port 80

 server accepts TCP
connection from client

 HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must
be maintained

 if server/client crashes,
their views of “state”
may be inconsistent,
must be reconciled

aside

Application 2-22

HTTP connections

non-persistent HTTP
 at most one object

sent over TCP
connection.

persistent HTTP
 multiple objects can

be sent over single
TCP connection
between client,
server.

Application 2-23

Nonpersistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message
(containing URL) into TCP
connection socket. Message
indicates that client wants
object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port
80. “accepts” connection,
notifying client

3. HTTP server receives
request message, forms
response message
containing requested object,
and sends message into its
socket

time

(contains text,
references to 10

jpeg images)

Application 2-24

www.someSchool.edu/someDepartment/home.index

Nonpersistent HTTP (cont.)

5. HTTP client receives
response message
containing html file,
displays html. Parsing html
file, finds 10 referenced
jpeg objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application 2-25

Non-Persistent HTTP: Response time

 RTT: time for a small
packet to travel from
client to server and back.

response time:
 one RTT to initiate TCP

connection
 one RTT for HTTP request

and first few bytes of HTTP
response to return

 file transmission time

total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application 2-26

Persistent HTTP

non-persistent HTTP issues:
 requires 2 RTTs per object
 OS overhead for each TCP

connection
 browsers often open

parallel TCP connections
to fetch referenced
objects

persistent HTTP
 server leaves connection

open after sending
response

 subsequent HTTP
messages between
same client/server sent
over open connection

 client sends requests as
soon as it encounters a
referenced object

 as little as one RTT for all
the referenced objects

Application 2-27

HTTP request message

 two types of HTTP messages: request, response
 HTTP request message:

 ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return,
line feed at start
of line indicates
end of header lines

Application 2-28

carriage return character

line-feed character

HTTP request message: general format

Application 2-29

request
line

header
lines

body

Uploading form input

POST method:
 web page often

includes form input

 input is uploaded to
server in entity body

URL method:
 uses GET method
 input is uploaded in

URL field of request
line: www.somesite.com/animalsearch?monkeys&banana

Application 2-30

Method types

HTTP/1.0
 GET
 POST
 HEAD

 asks server to leave
requested object out
of response

HTTP/1.1
 GET, POST, HEAD
 PUT

 uploads file in entity
body to path specified
in URL field

 DELETE
 deletes file specified

in the URL field

Application 2-31

HTTP response message

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

Application 2-32

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

HTTP response status codes

200 OK
 request succeeded, requested object later in this msg

301 Moved Permanently
 requested object moved, new location specified later in

this msg (Location:)

400 Bad Request
 request msg not understood by server

404 Not Found
 requested document not found on this server

505 HTTP Version Not Supported

 status code appears in 1st line in server->client
response message.

 some sample codes:

Application 2-33

User-server state: cookies

many Web sites use
cookies

four components:
1) cookie header line of

HTTP response
message

2) cookie header line in
HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:
 Susan always access

Internet from PC
 visits specific e-

commerce site for first
time

 when initial HTTP
requests arrives at
site, site creates:
 unique ID
 entry in backend

database for ID

Application 2-34

Cookies: keeping “state” (cont.)

client server

cookie file

ebay 8734

backend
database

Application 2-35

Cookies: keeping “state” (cont.)

client server

ebay 8734
usual http request

msg
Amazon server

creates ID
1678 for usercreate

 entry

backend
database

Application 2-36

Cookies: keeping “state” (cont.)

client server

cookie file

ebay 8734
usual http request

msg
Amazon server

creates ID
1678 for usercreate

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

backend
database

Application 2-37

Cookies: keeping “state” (cont.)

client server

usual http response
msg

cookie file

usual http request
msg

cookie: 1678
cookie-
specific
action

access

ebay 8734
usual http request

msg
Amazon server

creates ID
1678 for usercreate

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

backend
database

Application 2-38

Cookies: keeping “state” (cont.)

client server

usual http response
msg

cookie file

one week later:

usual http request
msg

cookie: 1678
cookie-
specific
action

access

ebay 8734
usual http request

msg
Amazon server

creates ID
1678 for usercreate

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

ebay 8734
amazon 1678

backend
database

Application 2-39

Cookies: keeping “state” (cont.)

client server

usual http response
msg

usual http response
msg

cookie file

one week later:

usual http request
msg

cookie: 1678
cookie-
specific
action

access

ebay 8734
usual http request

msg
Amazon server

creates ID
1678 for usercreate

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request
msg

cookie: 1678
cookie-
specific
action

access
ebay 8734
amazon 1678

backend
database

Application 2-40

Cookies (continued)

what cookies can bring:
 authorization
 shopping carts
 recommendations
 user session state

(Web e-mail)

cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name

and e-mail to sites

aside

Application 2-41

Web caches (proxy server)

 user sets browser:
Web accesses via
cache

 browser sends all
HTTP requests to
cache
 object in cache:

cache returns object
 else cache requests

object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

Application 2-42

Web caches (proxy server)

 user sets browser:
Web accesses via
cache

 browser sends all
HTTP requests to
cache
 object in cache:

cache returns object
 else cache requests

object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request HTTP request

origin
server

origin
server

Application 2-43

Web caches (proxy server)

 user sets browser:
Web accesses via
cache

 browser sends all
HTTP requests to
cache
 object in cache:

cache returns object
 else cache requests

object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Application 2-44

Web caches (proxy server)

 user sets browser:
Web accesses via
cache

 browser sends all
HTTP requests to
cache
 object in cache:

cache returns object
 else cache requests

object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP re
quest

HTTP re
sponse

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Application 2-45

More about Web caching

 cache acts as both
client and server

 typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
 reduce response time

for client request
 reduce traffic on an

institution’s access
link.

 Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

Application 2-46

Caching example
assumptions
 average object size = 100,000

bits
 avg. request rate from

institution’s browsers to origin
servers = 15/sec

 delay from institutional router
to any origin server and back
to router = 2 sec

consequences
 utilization on LAN = 15%
 utilization on access link =

100%
 total delay = Internet delay +

access delay + LAN delay
 = 2 sec + minutes +

milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application 2-47

Caching example (cont)

possible solution
 increase bandwidth of

access link to, say, 10 Mbps
consequence
 utilization on LAN = 15%
 utilization on access link =

15%
 Total delay = Internet

delay + access delay + LAN
delay

 = 2 sec + msecs + msecs
 often a costly upgrade

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

Application 2-48

Caching example (cont)

possible solution:
 install cache

consequence
 suppose hit rate is 0.4

 40% requests will be satisfied
almost immediately

 60% requests satisfied by
origin server

 utilization of access link reduced
to 60%, resulting in negligible
delays (say 10 msec)

 total avg delay = Internet delay
+ access delay + LAN delay = .
6*(2.01) secs + .4*milliseconds
< 1.4 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application 2-49

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version

 cache: specify date of
cached copy in HTTP
request
If-modified-since:

<date>
 server: response

contains no object if
cached copy is up-to-
date:
HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since: <date> object

not
modified
before
<date>

Application 2-50

object
modified

after
<date>

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version

 cache: specify date of
cached copy in HTTP
request
If-modified-since:

<date>
 server: response

contains no object if
cached copy is up-to-
date:
HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

object
modified

after
<date>

Application 2-51

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version

 cache: specify date of
cached copy in HTTP
request
If-modified-since:

<date>
 server: response

contains no object if
cached copy is up-to-
date:
HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

Application 2-52

Chapter 2: Application layer

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 Socket programming with TCP

2.8 Socket programming with UDP

Application 2-53

FTP: the file transfer protocol

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either to/from
remote)

 server: remote host
 ftp: RFC 959
 ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

Application 2-54

FTP: separate control, data connections

 FTP client contacts FTP server at
port 21, TCP is transport
protocol

 client authorized over control
connection

 client browses remote directory
by sending commands over
control connection.

 when server receives file
transfer command, server opens
2nd TCP connection (for file) to
client

 after transferring one file, server
closes data connection.

FTP
client

FTP
server

TCP control
connection,

server port 21

Application 2-55

FTP: separate control, data connections

 FTP client contacts FTP server at
port 21, TCP is transport
protocol

 client authorized over control
connection

 client browses remote directory
by sending commands over
control connection.

 when server receives file
transfer command, server opens
2nd TCP connection (for file) to
client

 after transferring one file, server
closes data connection.

FTP
client

FTP
server

TCP control
connection,

server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file.

 control connection: “out of
band”

 FTP server maintains “state”:
current directory, earlier
authentication

Application 2-56

FTP commands, responses

sample commands:
 sent as ASCII text over

control channel
 USER username
 PASS password
 LIST return list of file in

current directory
 RETR filename retrieves

(gets) file
 STOR filename stores

(puts) file onto remote
host

sample return codes
 status code and phrase

(as in HTTP)
 331 Username OK,

password required
 125 data connection

already open;
transfer starting

 425 Can’t open data
connection

 452 Error writing
file

Application 2-57

Chapter 2: Application layer

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with TCP
2.8 Socket programming with UDP

Application 2-58

Electronic Mail

Three major components:
 user agents
 mail servers
 simple mail transfer

protocol: SMTP

User Agent
 “mail reader”
 composing, editing, reading

mail messages
 e.g., Outlook, elm, Mozilla

Thunderbird, iPhone mail
client

 outgoing, incoming
messages stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application 2-59

Electronic Mail: mail servers

Mail Servers
 mailbox contains incoming

messages for user
 message queue of outgoing

(to be sent) mail messages

SMTP protocol
 between mail servers to

send email messages
 client: sending mail

server
 “server”: receiving mail

server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application 2-60

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving server
 three phases of transfer

 handshaking (greeting)
 transfer of messages
 closure

 command/response interaction
 commands: ASCII text
 response: status code and phrase

 messages must be in 7-bit ASCII

Application 2-61

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message and “to”
bob@someschool.edu

2) Alice’s UA sends
message to her mail
server; message placed
in message queue

3) Client side of SMTP
opens TCP connection
with Bob’s mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user
agent to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Application 2-62

Sample SMTP interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Application 2-63

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in
7-bit ASCII

 SMTP server uses
CRLF.CRLF to determine
end of message

comparison with HTTP:
 HTTP: pull
 SMTP: push

 both have ASCII
command/response
interaction, status codes

 HTTP: each object
encapsulated in its own
response msg

 SMTP: multiple objects
sent in multipart msg

Application 2-64

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,
 To:
 From:
 Subject:
different from SMTP

commands!
 body

 the “message”, ASCII
characters only

header

body

blank
line

Application 2-65

Mail access protocols

 SMTP: delivery/storage to receiver’s server
 mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and

download
 IMAP: Internet Mail Access Protocol [RFC 1730]

• more features (more complex)
• manipulation of stored msgs on server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

Application 2-66

POP3 protocol

authorization phase
 client commands:

 user: declare username
 pass: password

 server responses
 +OK
 -ERR

transaction phase, client:
 list: list message numbers
 retr: retrieve message by

number
 dele: delete
 quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application 2-67

POP3 (more) and IMAP
more about POP3
 previous example uses

“download and delete”
mode.

 Bob cannot re-read e-
mail if he changes
client

 “download-and-keep”:
copies of messages on
different clients

 POP3 is stateless
across sessions

IMAP
 keeps all messages in

one place: at server
 allows user to organize

messages in folders
 keeps user state

across sessions:
 names of folders and

mappings between
message IDs and
folder name

Application 2-68

Chapter 2: Application layer

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 Electronic Mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 Socket programming with TCP

2.8 Socket programming with UDP

Application 2-69

DNS: Domain Name System

people: many identifiers:
 SSN, name, passport

#

Internet hosts, routers:
 IP address (32 bit) -

used for addressing
datagrams

 “name”, e.g.,
www.yahoo.com -
used by humans

Q: map between IP address
and name, and vice
versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol host,
routers, name servers to
communicate to resolve names
(address/name translation)
 note: core Internet

function, implemented as
application-layer protocol

 complexity at network’s
“edge”

Application 2-70

DNS
Why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized

database
 maintenance

doesn’t scale!

DNS services
 hostname to IP

address translation
 host aliasing

 Canonical, alias
names

 mail server aliasing
 load distribution

 replicated Web
servers: set of IP
addresses for one
canonical name

Application 2-71

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

client wants IP for www.amazon.com; 1st approx:
 client queries a root server to find com DNS server
 client queries com DNS server to get amazon.com DNS

server
 client queries amazon.com DNS server to get IP address

for www.amazon.com

Application 2-72

DNS: Root name servers

 root name server:
 contacts authoritative name server if name mapping not

known
 gets mapping
 returns mapping to local name server

 13 root name
servers
worldwideb USC-ISI Marina del Rey, CA

l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

Application 2-73

TLD and Authoritative Servers

Top-level domain (TLD) servers:
 responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
 Network Solutions maintains servers for com TLD
 Educause for edu TLD

Authoritative DNS servers:
 organization’s DNS servers, providing authoritative

hostname to IP mappings for organization’s servers
(e.g., Web, mail).

 can be maintained by organization or service provider

Application 2-74

Local Name Server

 does not strictly belong to hierarchy
 each ISP (residential ISP, company, university) has

one
 also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
 acts as proxy, forwards query into hierarchy

Application 2-75

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Application 2-76

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3recursive query:
 puts burden of

name resolution on
contacted name
server

 heavy load?

DNS name
resolution example

Application 2-77

DNS: caching and updating records

 once (any) name server learns mapping, it
caches mapping
 cache entries timeout (disappear) after

some time
 TLD servers typically cached in local name

servers
• Thus root name servers not often visited

 update/notify mechanisms proposed IETF
standard
 RFC 2136

Application 2-78

DNS records

DNS: distributed database storing resource records
(RR)

Type=NS
 name is domain (e.g.,

foo.com)
 value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

Type=A
 name is hostname
 value is IP address

Type=CNAME
 name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
 servereast.backup2.ibm.com

 value is canonical name

Type=MX
 value is name of

mailserver associated with
name

Application 2-79

DNS protocol, messages

DNS protocol : query and reply messages, both
with same message format

msg header
 identification: 16 bit #

for query, reply to
query uses same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

Application 2-80

DNS protocol, messages

Name, type fields
 for a query

RRs in
response
to query

records for
authoritative servers

additional “helpful”
info that may be used

Application 2-81

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar (e.g.,

Network Solutions)
 provide names, IP addresses of authoritative name

server (primary and secondary)
 registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

Application 2-82

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

