
CMPT 371: Solutions to Homework 2

March 3, 2007

Problem 3.4: The sender starts by sending a packet with sequence number 0. The receiver receives
it and sends back an ACK. That ACK gets corrupted along the way. The sender will resend the
0 packet, but the receiver has transitioned into the “wait for 1” state, so it returns a NAK for the
resent 0 packet. This continues forever.

Problem 3.8: Obviously RDT 3.0 will handle this situation, but we should be able to design a
simpler protocol because we will know for certain when a packet is lost. Hence our goal will be to
make as few changes to RDT 2.1 as possible. Call the states of the sender in RDT 2.1 (figure 3.11)
S0, S1, S2, S3, going clockwise from the start state. Let RTTmax be the maximum delay; that is,
the longest amount of time that can elapse between when a packet is sent by the sender and an
ACK or NAK is received in return. We will set the time to the value RTTmax. On the transition
from S0 to S1 and from S2 to S3, start the timer. Add a transition from S1 to itself and from S3

to itself with the label timeout
udt send(sndpkt) . What’s the difference between this and 3.0? We don’t have

to worry about receiving an ACK/NAK in states S0 and S2.

Problem 3.13: The protocol will be based on GoBackN in that the sender will have a window
of size N and when it discovers a loss it will resend everything starting with that lost packet. The
timer will be on the receiver side now and the receiver’s default behavior will be to periodically
send NAKs unless it receives a packet. The sequence number of the NAK is meant to indicate the
next packet it is expecting.

More precisely, the sender will start sending and will keep going until it has sent N packets, as
long as there is a supply of packets and it hasn’t received a NAK. If it receives a NAK i for some i
in the past, it will start resending everything starting with packet i. After N packets, it will stop
and wait for NAK i where i-1 is the last packet sent. If it gets such a NAK it will advance the
sending window by one and send packet i (when there is one).

In general, the receiver is expecting the next packet, say sequence number i. It starts a timer
and waits. If it receives packet i, it restarts the timer expecting packet i+1. If it doesn’t receive
packet i and there is a timeout, it sends NAK i and restarts the timer. If it receives a previous
packet, it does nothing. If it receives a future packet, it sends NAK i and restarts the timer.

When the sender doesn’t have much to send, the receiver might not discover a lost packet until
its timer times out. When the sender has a lot to send, the receiver will discover a lost packet more
quickly because it will receive a future packet (i.e. a packet after the one it is expecting).

Problem 3.18: The sequence numbers go from 0 to k − 1. If N ≤ m = bk/2c, then the sender
cannot send a second pkt 0 without getting an ACK for pkt m. Otherwise, it can.

Problem 3.20:

1



(a) Recall that TCP sequence numbers refer to the number of bytes in the bytestream that have
already been sent, not to the number of packets. Therefore, if L > 232, or 4 GB, then TCP
will need to rollover its sequence numbers.

(b) The number of segments will be 232/1460. Each segment will have size 1460 + 66 = 1526
bytes or 1526 × 8 bits. Therefore, the total time will be

232

1460

1526 × 8

10 × 220
≈ 3, 422 seconds.

If you used 106 instead of 220, that’s fine.

Problem 3.21:

(a) Assume we initialize EstimatedRTT with 0. Then, after the four samples,

EstimatedRTT = (0.9)3(0.1)SampleRTT4 + (0.9)2(0.1)SampleRTT3

+(0.9)(0.1)SampleRTT2 + (0.1)SampleRTT1.

(b)

EstimatedRTT =

n∑

i=1

(0.9)i−1(0.1)SampleRTTi.

(c) The influence of a given sample decreases exponentially in the number of samples we have
obtained since then.

Problem 2.13:

(a) A whois database contains the names and IP addresses of various hosts within a given domain.
In particular, it lists the authoritative name servers of a domain. The various whois databases
are maintained by the registrars of domain names.

(b) See attached transcript.

(c) See attached transcript. We use the dig command instead of nslookup because it is more
thorough and up-to-date.

(d) See attached transcript. <www.sfu.ca> does not have multiple IP addresses, but <www.google.com>
does.

(e) See attached transcript.

(f) An attacker could use a whois database to identify the authoritative name servers of an
institution. The attacker can then use nslookup to identify the actual names of web and mail
servers, etc. He or she can then, for instance, try to overwhelm them with mass logins.

(g) While whois databases can be used for attack or fraud, they can also be used for authenti-
cation. For instance, they might allow one to verify that a given webpage or email is really
from the institution it claims to be from.

2


