. L 11
Systems Analysis and Design in a .
Changing World, Fourth Edition

CHAPTER
THE OBJECT-ORIENTED APPROACH
TO DESIGN: USE CASE

REALIZATION

Learning Objectives

¢ EXxplain the purpose and objectives of object-
oriented design

¢ Develop design class diagrams

¢ Develop interaction diagrams based on the
principles of object responsibility and use case
controllers

Systems Analysis and Design in a Changing World, 4th Edition 2

¢ Develop detalled sequence diagrams as the core
process in systems design

Learning Objectives (continued)

¢ Develop communication diagrams as part of
systems design

¢ Document the architectural design using package
diagrams

Systems Analysis and Design in a Changing World, 4th Edition 3

¢ Primary focus of this chapter is how to develop
detailed object-oriented design models

Overview

¢ Programmers use models to code the system

¢ Two most important models are design class
diagrams and interaction diagrams (sequence
diagrams and communication diagrams)

¢ Class diagrams are developed for domain, view,
and data access layers

¢ Interaction diagrams extend system sequence
diagrams

Systems Analysis and Design in a Changing World, 4th Edition 4

Object-Oriented Design—The Bridge
Between Analysis and Programming

¢ Bridge between users’ requirements and new
system’s programming

¢ Object-oriented design is process by which
detailed object-oriented models are built

¢ Programmers use design to write code and test
new system

¢ User Iinterface, network, controls, security, and
database require design tasks and models

Systems Analysis and Design in a Changing World, 4th Edition 5

Overview of Object-Oriented Programs

¢ Set of objects that cooperate to accomplish result

¢ Object contains program logic and necessary
attributes in a single unit

¢ Objects send each other messages and
collaborate to support functions of main program

¢ OO systems designer provides detall for
programmers

e Design class diagrams, interaction diagrams, and
some state machine diagrams

Systems Analysis and Design in a Changing World, 4th Edition 6

Object-Oriented Three-Layer Program

{ Figure 11-1_ NN

Object-oriented event-
driven program flow

2. Request

student
object

Database
access
object

6. Save updates to
database

3. Retrieve student
Student information

object

Input
window
object

1. Enter student ID

Systems Analysis and Design in a Changing World, 4th Edition

5. Update student
information

4. Enter personal
information updates

11

Sequence Diagram for Updating Student

(Figure 11-2)

i :StudentUpdController

:Student

changeName (studentlD, name)

changeName (name)

I _
[
[
I
I
I
I
I
I
I
I
I
I
I
I

Systems Analysis and Design in a Changing World, 4th Edition

N

Student Class Examples for the Domain Class
and the Design Class Diagrams (rigure 11-3)

Domain diagram Student Design class diagram Student
Student Student

studentID -studentlD: integer {key}

name -name: string

address -address: string

dateAdmitted -dateAdmitted: date

lastSemesterCredits -lastSemesterCredits: number

lastSemesterGPA -lastSemesterGPA: number

totalCreditHours -totalCreditHours: number

totalGPA -totalGPA: number

major -major: string
+createStudent (name, address, major): Student
+createStudent (studentlD): Student

+changeName (name)

+changeAddress (address)
+changeMajor (major)

+getMame () : string

+getAddress () : string

+getMajor () : string

+getCreditHours () : number
+updateCreditHours ()

+findAboveHours (int hours): studentArray

Systems Analysis and Design in a Changing World, 4th Edition

public class Student
{ I I

//lattributes
private int studentID;
private String firstName;
private String lastName;
private String street;
private String city;
Xal I Ip e private String state;
private String zipCode;
private Date dateAdmitted;
(: private float numberCredits;
IaSS private String lastActiveSemester;
private float lastActiveSemesterGPA;
private float gradePointAverage;

Defi n iti O n private String major;

//constructors
public Student (String inFirstName, String inLastName, String inStreet,

i n ava for String inCity, String inState, String inZip, Date inDate)
. | {

firstName = inFirstName;
lastName = inLastName;

I l }
Stu d e t public Student (int inStudentID)

{

Class >

//get and set methods

(Flgure 11_4a) public String getFullName ()

//read database to get values

{
return firstName + " " + lastName;
b
public void setFirstName (String inFirstName)
{
firstName = inFirstName;
}
public float getGPA ()
{
return gradePointAverage;
b

//and so on

//processing methods

public void updateGPA ()

{
//access course records and update lastActiveSemester and
//to-date credits and GPA

Systems Analysis and Design in a Changing World, 4th Edition 10

11
Object-Oriented Design .
Processes and Models

¢ Diagrams developed for analysis/requirements

e Use case diagrams, use case descriptions and
activity diagrams, domain model class diagrams,
and system sequence diagrams

¢ Diagrams developed for design
e Interaction diagrams and package diagrams

e Design class diagrams — include object-oriented
classes, navigation between classes, attribute
names, method names, and properties needed for
programming

Systems Analysis and Design in a Changing World, 4th Edition 11

Design
Models with
Their
Respective
Input

Models
(Figure 11-5)

Requirements models

Domain model class diagrams

Class name Customer

Create
new order

Use case diagrams

Use case descriptions
and activity diagrams

1
Pl

i
1
|
1

System sequence diagrams

Requirements state machine
diagrams

Systems Analysis and Design in a Changing World, 4th Edition

Design models

Class name Customer
- Altributes > name
Operations findName {)

Design class diagrams

| :Controller ” :Cuslomerl [:Order |

T

Interaction diagrams

Design state machine diagrams

Package diagrams

———

12

- -
lterative Process of OO Design—
Design Steps (Figure 11-6)

Realization of use case — specialization of all detailed system processing
for each use case

Overall design process

1. Develop the first-cut design class diagram showing navigation visibility.
2. Design each use case by developing a sequence diagram for each.
(a) Develop first-cut sequence diagrams.
(b) Develop multilayer sequence diagrams.
3. Update the design class by adding method signatures and navigation information.

4. Partition the solution into packages, as appropriate.

Systems Analysis and Design in a Changing World, 4th Edition 13

_ _ 11

Design Classes, Interaction, and .
Design Process

¢ Design class diagrams and detailed interaction diagrams

e Use each other as inputs and are developed in parallel

¢ First-cut design class diagram is based on domain model
and system design principles

¢ First-cut sequence diagram for use case is extended from
system sequence diagram (SSD)

e Shows interacting objects
¢ Sequence diagram is completed layer by layer
e Problem domain, data access, and view layers
¢ Design class diagram is updated based on sequence
diagram

Systems Analysis and Design in a Changing World, 4th Edition 14

Design Class Symbols

¢ UML does not distinguish between design class
notation and domain model notation

¢ Domain model class diagram shows conceptual
classes in users’ work environment

¢ Design class diagram specifically defines
software classes

¢ UML uses stereotype notation to categorize a
model element by its characteristics

Systems Analysis and Design in a Changing World, 4th Edition 15

Standard Stereotypes Found in Design Models

(Figure 11-7)

«Entity»
Customer - o O

Customer

«Controls
UseCaseHandler - - @

UseCaseHandler

«Boundary»
OrderWindow < >

OrderWindow

«DataAccess»
OrderDBEReader - >

OrderDBEReader

Systems Analysis and Design in a Changing World, 4th Edition 16

Standard Design Classes

¢ Entity — design identifier for problem domain
class

e Persistent class — exists after system is shut down

¢ Control — mediates between boundary and entity
classes, between the view layer and domain layer

¢ Boundary — designed to live on system’s
automation boundary, touched by users

e User interface and windows classes

¢ Data access — retrieves data from and sends
data to database

Systems Analysis and Design in a Changing World, 4th Edition 17

Navigation Visibility

¢ A design principle in which one object has

reference to another object

e Can interact with other object by sending

MeSSages
Customer Order

accountNo {key} orderlD {key}
name orderDate
billingAddress priorityCode
shippingAddress >shipping&Handling
dayPhone tax
nightPhone grandTotal
myOrder

Systems Analysis and Design in a Changing World, 4th Edition

18

Design Class Notation

¢ Name — class name and stereotype information

¢ Attribute visibility (private or public) — attribute name, type-
expression, initial-value, property

¢ Method signature — information needed to invoke (or call)
the method

e Method visibility, method name, type-expression (return
parameter), method parameter list (incoming arguments)

e Overloaded method — method with same name but two or
more different parameter lists

e Class-level method — method associated with class instead
of each object (static or shared method), denoted by an
underline

Systems Analysis and Design in a Changing World, 4th Edition 19

Notation Used to Define a Design Class
(Figure 11-8)

«Stereotype Names
Class Name::Parent Class

Attribute list
visibility name:type-expression = initial-value {property}

Method list
visibility name (parameter list): type-expression

Systems Analysis and Design in a Changing World, 4th Edition 20

Student
Design Class
Example

Student

-studentlD: integer {key}
-name: string

-address: string
-dateAdmitted: date
-lastSemesterCredits: number
-lastSemesterGPA: number
-totalCreditHours: number
-totalGPA: number

-major: string

+createStudent (name, address, major): Student
+createStudent (studentlD): Student
+changeName (name)

+changeAddress (address)
+changeMajor (major)

+getName () : string

+getAddress () : string

+getMajor () : string

+getCreditHours () : number
+updateCreditHours ()

+findAboveHours (int hours): studentArray

Systems Analysis and Design in a Changing World, 4th Edition

21

11
Developing the First-Cut .
Design Class Diagram

¢ Extend domain model class diagram

e Elaborate attributes with type and initial value
iInformation

¢ Detalled design proceeds use case-by-use case
e Interaction diagrams implement navigation
e Navigation arrows are updated to be consistent

e Method signatures are added to each class

Systems Analysis and Design in a Changing World, 4th Edition 22

Developing First-Cut Design Class Diagram
(Continued)

¢ Choose classes involved with the use case
¢ Add use case controller
¢ Elaborate attributes

e Visibility, type-expression, initial-value, property
¢ Establish first-cut navigation visibility

e One-to-many relationships usually navigated from superior to
subordinate

e Mandatory relationships usually navigated from independent to
dependent

e When an object needs information from another object, navigation
arrow points to the object itself or to its parent in hierarchy

e Navigation can be in both directions (arrows bidirectional)

Systems Analysis and Design in a Changing World, 4th Edition 23

11
Start with Domain Model Class Diagram

[Fioure 115 NS

artial RMO domain

model class diagram

Catalog

cataloglD {key}
season

year
description
effectiveDate CatalogProduct
endDate __{price
_.=="" |specialPrice
oL Customer
0..* accountNo {key}
. name
Productitem OrderTransaction billingAddress
productiD {key} date shippingAddress
vendor transactionType dayPhone
gender amount nightPhone
description paymentMethod
o
1
1
0..* D *®
Inventoryltem Order
inventorylD {key} Orderltem 1 YorderID {key}
2';‘;_ 0. | Quantity orderDate
; 1// price \ priorityCode
options backorderStatus |1 # shipping&Handling
guantityOnHand 1 ltax
averageCost
reorderQuantity grandTotal

Systems Analysis and Design in a Changing World, 4th Edition

24

First-Cut
RMO
Design
Class
Diagram for
Look Up
ltem
Availability

Use Case
(Figure 11-11)

«Controller»
AvailabilityHandler

L4

Catalog

-cataloglD: string
-season: string
-year: string
-description: string
-effectiveDate: date
-endDate: date

CatalogProduct

Y

l

Productltem

-productlD: string
-vendor: string
-gender: string
-description: string

-cataloglD: string
-productlD: string
-price: float
-specialPrice: float

Inventoryltem

Systems Analysis and Design in a Changing World, 4th Edition

-inventorylD: string
-size: string

-color: string
-options: string

-quantityOnHand: integer

-averageCost: float

-reorderQuantity: integer

25

.
Design Patterns and the Use Case
Controller

¢ Design pattern

e A standard solution template to a design requirement that
facilitates the use of good design principles

¢ Use case controller pattern

e Design requirement is to identify which problem domain
class should receive input messages from the user interface

for a use case

e Solution is to choose a class to serve as a collection point
for all incoming messages for the use case. Controller acts
as intermediary between outside world and internal system

e Artifact — a class invented by a system designer to handle a
needed system function, such as a controller class

Systems Analysis and Design in a Changing World, 4th Edition 26

Some Fundamental Design Principles

¢ Encapsulation — each object is self-contained unit that
Includes data and methods that access data

¢ Object reuse — designers often reuse same classes for
windows components

¢ Information hiding — data associated with object is not
visible to outside world

¢ Protection from variations — parts of a system that are
unlikely to change are segregated from those that will

¢ Indirection — an intermediate class is placed between two
classes to decouple them but still link them

Systems Analysis and Design in a Changing World, 4th Edition 27

Some Fundamental Design Principles
(Continued)

¢ Coupling — qualitative measure of how closely classes In
a design class diagram are linked

e Number of navigation arrows in design class diagram or
messages in a sequence diagram

e Loosely coupled — system is easier to understand and
maintain

¢ Cohesion — qualitative measure of consistency of
functions within a single class

e Separation of responsibility — divide low cohesive class into
several highly cohesive classes

e Highly cohesive — system is easier to understand and
maintain and reuse is more likely

Systems Analysis and Design in a Changing World, 4th Edition 28

Realizing Use Cases and Defining Methods
—Designing with Sequence Diagrams

¢ Realization of use case done through interaction
diagram development

¢ Determine what objects collaborate by sending
messages to each other to carry out use case

¢ Sequence diagrams and communication
diagrams represent results of design decisions

e Use well-established design principles such as
coupling, cohesion, separation of responsibilities

Systems Analysis and Design in a Changing World, 4th Edition 29

Object Responsibllity

¢ Objects are responsible for system processing

¢ Responsibilities include knowing and doing

e Knowing about object’s own data and other classes of
objects with which it collaborates to carry out use cases

e Doing activities to assist in execution of use case
+ Receive and process messages

+ Instantiate, or create, new objects required to complete use
case

¢ Designh means assigning responsibility to the
appropriate classes based on design principles
and using design patterns

Systems Analysis and Design in a Changing World, 4th Edition 30

Designing with Sequence Diagrams

¢ Seguence diagrams used to explain object
Interactions and document design decisions

¢ Document inputs to and outputs from system for
single use case or scenario

¢ Capture interactions between system and
external world as represented by actors

¢ Inputs are messages from actor to system

¢ Outputs are return messages showing data

Systems Analysis and Design in a Changing World, 4th Edition 31

Annotated System Sequence Diagram (SSD) for

the Look Up Item Availability Use Case (from chapter 7)
Figure 11-12_ I

550 for the Look up item

availlability use case

The actor An object (underlined)
interacting with representing the
the system automated system
i An input message
Clerk System

inquireOnltem (cataloglD, prodID, size)

1
I
1
=1
-
I
1
The object lifeline, :
showing the “sequence” of I
messages, top to bottom I
I
1
1
I
1
1
I
1

description, price, guantity

An output message

R CE LT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Systems Analysis and Design in a Changing World, 4th Edition 32

First-Cut Sequence Diagram

¢ Start with elements from SSD

¢ Replace :System object with use case controller

¢ Add other objects to be included in use case
e Select input message from the use case
e Add all objects that must collaborate

¢ Determine other messages to be sent

e Which object is source and destination of each
message”?

Systems Analysis and Design in a Changing World, 4th Edition 33

Objects included in Look Up Item Availability

[Figure 11-13 [N

Objects included in Loaok
up item availability

X

Clerk :AvailabilityHandler :Catalog

:Productltem

:CatalogProduct

:Inventoryltem

; ingquireOnltem

; (cataloglD, prodID,
; Size)

]

S
_

Systems Analysis and Design in a Changing World, 4th Edition

11

34

Guidelines for Sequence Diagram
Development for Use Case

¢ Take each input message and determine internal
messages that result from that input

e For that message, determine its objective

e Needed information, class destination, class
source, and objects created as a result

e Double check for all required classes

¢ Flesh out components for each message

e [teration, guard-condition, passed parameters,
return values

Systems Analysis and Design in a Changing World, 4th Edition 35

First-Cut Sequence Diagram for the Look
Up Item Avallability Use Case (Figure 11-14)

i :AvailabiltyHandler :Catalog :Productitem :CatalogProduct ‘Inventoryltem
Clerk |

1 1

1 inquireOnltem |

| (cataloglID, prodID, size)

-

inquireOnltem

I
I
I
I
I
I
I
I
(prodID, size) u

-
dasc =
getDescription ()
-
=

price := getPrice (].:

—
—

: ' 1
quantity := getQty (size) quantity := getQOH ()

=

e— — — — —

(desc, price, quantity)

(desc, price, guantity)

IS e,
\4

Systems Analysis and Design in a Changing World, 4th Edition 36

- -
Assumptions About First-Cut Sequence
Diagram
¢ Perfect technology assumption

e Don't include system controls like login/logout (yet)

¢ Perfect memory assumption
e Don’t worry about object persistence (yet)

e Assume objects are in memory ready to work

¢ Perfect solution assumption
e Don’'t worry about exception conditions (yet)

e Assume happy path/no problems solution

Systems Analysis and Design in a Changing World, 4th Edition 37

Maintain Product Information Use Case—

Start with SSD
| Figure 11-15 [N

550 for the Maintain

product information
use case
IE}{EIEI’T‘I

Clerk
1

result:= checkForExisting (prodID)

V

|

I

[result = null] createProduct (prodID, vendor , gender, desc) |

=

I

; loop /J |

: createlnvitem (size, colar, opts, QOH, cost, rordQty) :}:

| I

M — — — — - = - - — — - — m . m — . —— - - - - - -1

1 inviteminformation 1

I I

| |
endAddProd ()

=>4

I

I

Systems Analysis and Design in a Changing World, 4th Edition 38

Add Controller and Identify Domain

diagram for the

Maintain product

information use case

ProductController

4

Classes and Navigation Visibility
Figure 11-16 [N

First-cut design class

Productltem

Inventoryltem

-productID {key}
-vendor

-gender
-description

-inventorylD {key}
-size

-color

-options
-quantityOnHand
-averageCost
-reorderQuantity

Systems Analysis and Design in a Changing World, 4th Edition

39

Replace :System Object in SSD with

Controller and Domain Objects (Figure 11-17)

ﬁE :ProductController

‘Productitem

Jdnventoryltem

Clerk
|

result := checkForExisting (prodID)

|
|
=

|

|
[result = null] createProduct (prodID, vendor, gender, desc)
=

createlnvitem (size, color, opts, QOH, cost, rordQty)

=

I

|

endAddProd () >1|
|

[

Systems Analysis and Design in a Changing World, 4th Edition

40

First-Cut Sequence Diagram for Maintain
Product Information Use Case (Figure 11-18)

fi :ProductController :Productltem

Clerk T T
! [[

I [
| result:= checkForExisting (prodiD) ! result:= checkForExisting (prodID)
| I

) A8

|
[result = null]

createProduct (prodiD, vendor, gender, desc)

. >
! createProduct (prodiD, vendo, gende, desc)
I C —
I | I
|

loop] createlnvitem JI_ :
(size, color, opts, QOH, cost, rordQty) |
I = createlnvitem (info...)
: almll = createlnvitem (info...)
| anll:Inventoryltem
I € - - - - - - - - - - ==
I anll 1
| anllinformation - I |
| | I |
1 : : 1
| endAddProd () =l I '
I 1 [

Systems Analysis and Design in a Changing World, 4th Edition 41

¢ First-cut seqguence diagram — use case controller
plus classes in domain layer

Developing a Multilayer Design

¢ Add data access layer — design for data access
classes for separate database interaction

e No more perfect memory assumption

e Separation of responsibilities

¢ Add view layer — design for user-interface classes

e Forms added as windows classes to sequence
diagram between actor and controller

Systems Analysis and Design in a Changing World, 4th Edition 42

Approaches to Data Access Layer

[Figure 11-19 [N

Two methods for

accessing the database :Controller

and instantiating objects

aC: = createCust (custlD) -

aC:Customer

:Controller

aC: = getCust (custiD)

-

:CustomerDA

L readCust (aC)

(a) The Controller object creates
the Customer object

‘CustomerDA

createCust (info...) o

Systems Analysis and Design in a Changing World, 4th Edition

(b) The Data Access object creates
the Customer object

——

aC:Customer

11

43

Approaches to Data Access Layer (continued)

¢ Create data access class for each domain class

e CustomerDA added for Customer

e Database connection statements and SQL statements separated
into data access class. Domain classes do not have to know about
the database design or implementation

¢ Approach (a) — controller instantiates new
customer aC; new Instance asks DA class to
populate its attributes reading from the database

¢ Approach (b) — controller asks DA class to
Instantiate new customer aC; DA class reads
database and passes values to customer
constructor

e Two following examples use this approach

Systems Analysis and Design in a Changing World, 4th Edition 44

Adding Data Access Layer for Look Up
ltem Avallability Use Case (rigure 11-20)

:CatalogDA :ProductDA CatalogProductDA JnventoryltemDA
] Ll ! T
| 1 1 1
: o | 1 1 1
AvailabilityHandler | I I |
Clerk I I I |
1 I | 1 1 1
1 1 | 1 1 1
inguire(cataloglD, prodID, size) 1 1 1 1
%-l | createCataloeg (info...) I I I
1) 1 1 1 I
: ac = getC.atalng (c:atalang)ml s] I I
1 1 =1 — | aC:Catalog I I |
1 I | I I I
: : inquireQy ItI diD, si ! ! :
' I inquireOnitem (prodiD, size) =i] ; I
1 I | 1 I createProd (info...) I !
1 I | N I I I
I | I aP = getProd (prodID) I I |
I I I aP:Productltem] I
1 I 1 I 1 1 I
] I | | desc = getDescription() | | |
I i I i . = \createCatProd (info...)
1 1 1 1aCP = getCatProd (cataloglD, prodiD)
| | | L 1 1 =N :: aCP:CatalogProduct
1 I | I I I I
ica = Pri
1 1 1 | 1 price = getPrice() |)
1 I 1 T T T T | 1
1 1 1 I quantity := getQty (size) 1 1 | 1
I I I F ¥ :“;1 anll := getlnvitern (prodiD, size) createlnvitern (info...)
1 I | 1 1 I + + H anll:Inventoryltem
1 1 | I 1 1 1 I 1
antity := getQty (size
: I i i — el s Al e
desc, price, guantit
1 1 __'E__q___y_l 1 1 1 1 1 1
1 1 ’ | I 1 1 1 I 1 1
desc, price, guanti
1 il _p_ - fl_ _TEI] 1 1 1 I 1 I
I desc, price, quantity ! | I I 1 I [1 1
l.< _________ I | I 1 1 1 I | 1

Systems Analysis and Design in a Changing World, 4th Edition 45

Adding Data Access Layer for Maintain
Product Information Use Case (rigure 11-21)

:ProductController :ProductDA

Clerk

createlnvitem

desc := checkForExisting (prodID)_ 1 desc := checkForExisting Eﬂdlﬂ}

[} P | —1

1 | |
[desc=null] 1 !
createProduct (prodID, vendor, gender, desc) |

1 =L 1

] 1 |

! ! createProduct (prod|D, vendor, ;']encler. desc)

1 1 aP:Productitem

1 1

1 1

|

dnventoryDA

I
1
[
{si?e. color, opts, QOH, cost, rordQty) I"- saveProd (aP)
I } | L
1 1 : 1
| :reatEInvI}em (infa...) o
1 I =
1 |
I I >
1 I anll :=createlnvitem (info...)
: Bl s e ol eyl i o
M- = = intorraton ~ " : :
I | I |
1 1 | |
1 1 | |
| endAddProd () ~_| I I
I =T | I
] 1 | |
I 1 I I

Systems Analysis and Design in a Changing World, 4th Edition

anll:inventoryltem

\‘ savelnvltem (anll)
~
1
|
1
1
|
1
1
|

11

46

¢ Add GUI forms or Web pages between actor and
controller for each use case

Designing the View Layer

e Minimize business logic attached to a form

¢ Some use cases require only one form; some
require multiple forms and dialog boxes

¢ View layer design is focused on high-level
sequence of forms/pages — the dialog

¢ Detalls of interface design and HCI in Chapters
13 and 14

Systems Analysis and Design in a Changing World, 4th Edition 47

.
<<View>> ProductQuery Form Added for
Look Up Item Avallablility Use Case

«\igws
-ProductQuery :CatalogDA ProductDA

I i I

I I 1

| N I |

Clerk I :AvailabilityHandler | | |
I | I I
e | | I |
inguire . ! | |
(cataloglD, prodID, size) ; , |
| — = ' _ |

| I , ::reatiaﬁalalcug (info...) I

I | aC := getCalalog (cataloglD) 1

I I : —> —>| aC:Catalog ||

I I / I I

| 1 I . | |

Systems Analysis and Design in a Changing World, 4th Edition 48

Complete Look Up Item Availability Use Case §N!
with View Layer (rigure 11-22)

RIETE
ProductQuer (CatalogDA [ProductDA LatalogProductDA dnventoryltemDA
T T T T T
I 1 | I 1
I | | | |
Clerk " :AvailabilityHandler | | | |
I 1 1 | I 1
vl 1 1 1 1 1 1
inguire . | I I I I
(cataloglD, prodiD, size) I | | I |
! ""'h..l —
I — 1 — 1 L . | I I
I I ' creathalalog (info...) I I I
1 1 aC := getCatalog (cataloglD]) 1 1 1
I | b = =»| aC:Catalog || I |
I I I I I I I
I 1 P . - 1 I 1
inguireOnltem {prodiD, size) :
I I I ' createProd (info...) I I
I |] I =0 | I |
" " aP := getProd [pror:IID)I i i
! : : aP:Productitem
I I I I I | I |
I 1 I I I I I I
! 1 1 ! ldese := getDeseriptioin()._ ! ! !
I | 1 1 f t —1 createCatProd (info...) |
I 1 I I I I ' I I
I I I 1 1aCP := gelCatProd (calalogID, prodID) | = . 1
1 i i 1 i 1] =1 aCP:CatalogProduct |
I 1 I I I I el) I I
I | 1 1 1 1 price := getPrice() | 1 1
I I I I I | | I | |
I 1 I I I o i 1 1 I
| | : : | quantity i getQty {S'Ej}_l anll := getivitem (prodiD, size) | createlnviten (info..)
~ ~—
=
I ' . I I I l N 7 T anll:Inventoryltem
I 1 I I I I 1 I : I) I
I | 1 1 1 | 1 1 quantity := getQty (size) _:TI aial
I 1 I I I | i T T — 1
I 1 1 M emmmam- d I 1 I I I I
! J J ldese, price, quanlily' ! ! ! ! I !
I 7 = ooodd I | 1 I I I I
| " desc, price, quantity | | I | | | I
- - - - 1 1 1 1 | 1 1 1 1
I Idesc, price, quantity I I | I I I I I
I I I I I I I I I I I

Systems Analysis and Design in a Changing World, 4th Edition 49

- -
ProductWindow and MsgWindow for
Maintain Product Information Use Case

i I_|! -IEH!!I: .
ProductWindow Mﬂjﬂf w
Clerk ' | |
I I I |
1 i | |
checkForExisting (prodID) ;_ I
: :} desc :=checkForExisting (prodIiD)

|
|
! ew- [EERS
' MsgWindow [desc<=null] desc

|

I
[desc = nulljereateProduct (pradID, vendor, gender, desc)

: = >

I I createProduct (prodID, vendor, gepr:ler:desc})l

=
|
|

SRR R, 1

Systems Analysis and Design in a Changing World, 4th Edition 50

Complete Maintain Product Information Use
Case Use Case with View Layer (Figure 11-23)

a® |_||_I i&!ﬂ!u
‘ProductWindow

Clerk !

checkForExisting (prodiD)

EroductDA

i{l]!&ﬂ 3
MegWindow

[desc<=null] desc

[dese = nulljereateProduct (prodID, vendor, gender, desc)

desc :=checkFarExisting (prodiD)
l =~

v

createlnvitem
(size, colar, opts, QOH

—

createProduct (prodID, vendor, gender.desc) <

sViews
AnventoryWindow

, cost, rordQty)

endAddProd () <!

- |

>

=

reatelnvitem (info...)

I =1

1
|
T
L

I saveProd (aP)
1

L
|
|
1
|

Systems Analysis and Design in a Changing World, 4th Edition

anll :=createlnvitem (inf

o

ArventoryDA

I i o]

—
-,d-'

anll:inventoryltem

‘ savelnve (anll)

11

51

Designing with Communication Diagrams

¢ Communication diagrams and sequence
diagrams

e Both are interaction diagrams
e Both capture same information

e Process of designing is same for both

¢ Model used is designer’s personal preference

e Seguence diagram — use case descriptions and
dialogs follow sequence of steps

e Communication diagram — emphasizes coupling

Systems Analysis and Design in a Changing World, 4th Edition 52

The Symbols of a Communication Diagram
(Figure 11-24)

An object that
An actor who sends receives a message
the initial message and sends other
messages
1: firstMessage () 2: secondMessage ()
T . —
:Object :Object2
% - E —
4: finalResponse () 3: returnMessage ()
Actor
Alink between A message arrow and
symbols that send or

- descriptive name
receive messages

Systems Analysis and Design in a Changing World, 4th Edition

A Communication Diagram for
Look Up ltem Avallablllty (Figure 11-25)

. i 2: desc, price, quantity =
1: desc, price, quantity := inquireOnltem, (prodID, size)

inquireOnltem (cataloglD, prodID, size)

:AvailabilityHandler ‘Catalog
Clerk /
3: desc := getDescription () 4: price := getPrice () \
5: quantity : = getQty (size)
:CatalogProduct

S

5.1: quantity := getQOH()

 —
‘Productltem

Inventoryltem

Systems Analysis and Design in a Changing World, 4th Edition

o4

Look Up Item Availability Use Case 11
Using Iconic Symbols (rigure 11-26)

3.1: readCatalog ()

4: itemInquiry () F ? ;

aC:Catalog \ :CatalogDA

3.3: mﬂCatangProduct ()

3:initinquiry ()

1:inquire () 2: inquireOnltem () 3.2: initProduct () 41 desc := etDescnptlon)]
IR S _— 4.2: price = getPrice()
4.3: gty = getQty ()
:ProductQuery :AvailabilityHandler ()
Clerk

aP:Productltem acP:CatalogProduct

3.2.2 initinventory () l l

3.2.1: readProduct ()

3.3.1: readCatProduct ()

4.3.1: gty := getQOH ()

Q0 () ()
3.2.2.1: readinventory ()

:InventoryDA anll:Inventoryltem :ProductDA :CatalogProductDA

Systems Analysis and Design in a Changing World, 4th Edition 55

¢ Design class diagrams developed for each layer

Updating the Design Class Diagram

e New classes for view layer and data access layer

e New classes for domain layer use case controllers

¢ Seguence diagram’s messages used to add
methods

e Constructor methods
e Data get and set method

e Use case specific methods

Systems Analysis and Design in a Changing World, 4th Edition 56

Design Class with Method Signatures,
for the Productltem Class (rigure 11-27)

Productltemn

—productlD {key}
—vendor
—gender
—description

+getDescription () : string
+getQty (): integer
+createlnvitem ()

Systems Analysis and Design in a Changing World, 4th Edition 57

Updated
Design Class
Diagram
for the
Domain Layer

(Figure 11-28)

«Controller»
AvailabilityHandler

CatalogProduct

-cataloglD: string
-productlD: string
-price: float

+inquireOnltem (cataloglD, prodID, size)

-specialPrice: float

\

Catalog

-cataloglD: string
-season: string
-year: string
-description: string
-effectiveDate: date
-endDate: date

+inquireOnltem (prodID, size)

Y

Productltem

-productlD:string
-vendor:string
-gender: string
-description: string

+getDescription (): string
+getQty (size): integer
+createlnvitem ()

Returnitem

-inventorylD: string
-price: float
-reason: string
-condition: string
-disposal: string

Customer

-accountNo: string
-name: string
-billingAddress: string
-shippingAddress: string

-dayPhone: string 9

-nightPhone: string

+createOrder (accountMo):Order

+getPrice (): float

Inventoryltem

-inventoryl|D: string

-size: string

-color: string

-options: string
-guantityOnHand: integer
-averageCost: float
-reorderQuantity: integer

+getQOH (): integer
+updateQty (quantity): string

/

Orderltem

-productlD: integer
-inventorylD: integer
-description: string
-price: float

-quantity: integer
-backorderStatus: string

+createQOrderltem
(cataloglD, prodID, size, quantity)

Shipper

-shipperlD: integer
-name: string
-address: string
-contactName: string
-telephone: string

V

Shipment

-trackingMo: string
-dateSent: date
-timeSent: time
-shippingCost: float
-dateArrived: date
-timeArrived: time

OrderTransaction

-transaction|D: integer

-date: date

-transactionType: string
-amount: float
-paymentMethod: string
-creditCardInformation: string

Order

+createPayment (paymentAmt, payMethod,
cclnformation)

-orderlD: integer
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

+createOrder (accountMNo)

«Controller»
OrderHandler

+addltem (cataloglD, prodID, size, quantity) : orderltem
+completeOrder (} : float
+makePayment (cclnformation)

+startOrder (accountMNo)

+addltem (cataloglD, prodID, size, quantity)
+completeOrder ()

+makePayment (cclnformation)

I

Systems Analysis and Design in a Changing World, 4th Edition

11

58

- -
Package Diagram—Structuring
the Major Components

¢ High-level diagram in UML to associate classes
of related groups

¢ ldentifies major components of a system and
dependencies

¢ Determines final program partitions for each layer
e View, domain, data access

¢ Can divide system into subsystem and show
nesting within packages

Systems Analysis and Design in a Changing World, 4th Edition 59

Partial Design
of Three-Layer
Package
Diagram for
RMO

(Figure 11-29)

View Layer
MainWindow
ProductQuery OrderWindow NewltemWindow ;
i Domain Layer . N S : :
i OrderHandler ' ' | AvailabilityHandler ;
v) : ;
Catalog CatalogProduct . Productltem Inventoryltem ‘
v V ;
Customer Order Orderltem OrderTransaction '
Data Access Layer ; ;
v v
CatalogDA CatalogProductDA ProductitemDA InventoryDA
CustomerDA OrderDA OrderitemDA OrdTransactionDA

Systems Analysis and Design in a Changing World, 4th Edition

11

60

RMO Subsystem Packages Figue 11-30) Jiuta

Order-Entry Subsystem
View Layer Order Fulfillment Subsystem
MainWindow ProductQuery SRR e Shipper Shipment
OrderWindow NewltemWindow

Domain Layer Customer Maintenance

Subsystermn
OrderHandler AvailabilityHandler | | L_......... > Customer
Order Orderltem
OrderTransaction
Data Access Layer Catalggt!usl?‘i‘;?éiqance
OrderDA OrderltemDA [Ceeiii sy Catalog CatalogProduct
OrdTransactionDA Productitem Inventoryltem

Systems Analysis and Design in a Changing World, 4th Edition 61

_ 11
Implementation Issues for Three-Layer .
Design
¢ Construct system with programming
e Java or VB .NET or C# .NET

e IDE tools (Visual Studio, Rational Application
Developer, JBuilder)

¢ Integration with user-interface design, database
design, and network design

¢ Use object responsibility to define program
responsiblilities for each layer

e View layer, domain layer, data access layer

Systems Analysis and Design in a Changing World, 4th Edition 62

Summary

¢ Object-oriented design is the bridge between
user requirements (in analysis models) and final
system (constructed in programming language)

¢ Systems design is driven by use cases, design
class diagrams, and sequence diagrams

e Domain class diagrams are transformed into
design class diagrams

e Sequence diagrams are extensions of system
sequence diagrams (SSDs)

Systems Analysis and Design in a Changing World, 4th Edition 63

Summary (continued)

¢ Object-oriented design principles must be applied

e Encapsulation — data fields are placed in classes along with
methods to process that data

e Low coupling — connectivity between classes
e High cohesion — nature of an individual class

e Protection from variations — parts of a system that are
unlikely to change are segregated from those that will

e Indirection — an intermediate class is placed between two
classes to decouple them but still link them

e Separation navigation — access classes have to other
classes

¢ Three-layer design is used because maintainable

Systems Analysis and Design in a Changing World, 4th Edition 64

