

Systems Analysis and Design in a Changing World, Fourth Edition

Learning Objectives

- Explain the many reasons for creating information system models
- Describe three types of models and list some specific models used for analysis and design
- Explain how events can be used to define activities and use cases
- Identify and analyze events to which a system responds

Learning Objectives (continued)

- Explain how the concept of "things" in the problem domain also defines requirements
- Explain the similarities and the differences between data entities and objects
- Identify and analyze data entities and domain classes needed in the system
- Read, interpret, and create an entity-relationship diagram
- Read, interpret, and create a class diagram

Overview

- Document functional requirements by creating models
- Models created during analysis phase activity Define system requirements
- Two concepts help identify functional requirements in the traditional approach and object-oriented approach
 - Events that trigger use cases
 - Things in the users' work domain

Models and Modeling

- Analyst describes information system requirements using a collection of models
- Complex systems require more than one type of model
- Models represent some aspect of the system being built
- Process of creating models helps analyst clarify and refine design
- Models assist communication with system users

Reasons for Modeling (Figure 5-2)

Systems Analysis and Design in a Changing World, 4th Edition

Types of Models

- Different types of models are used in information systems development
 - Mathematical formulas that describe technical aspects of the system
 - Descriptive narrative memos, reports, or lists that describe aspects of the system
 - Graphical diagrams and schematic representations of some aspect of the system

Some Descriptive Models (Figure 5-3)

A narrative description of processing requirements as verbalized by an RMO phone-order representative:

"When customers call in, I first ask if they have ordered by phone with us before, and I try to get them to tell me their customer ID number that they can find on the mailing label on the catalog. Or, if they seem puzzled about the customer number, I need to look them up by name and go through a process of elimination, looking at all of the Smiths in Dayton, for example, until I get the right one. Next, I ask what catalog they are looking at, which sometimes is out of date. If that is the case, then I explain that many items are still offered, but that the prices might be different. Naturally, they point to a page number, which doesn't help me because of the different catalogs, but I get them to tell me the product ID somehow..."

List of inputs for the RMO customer support system:

Item inquiry New order Order change request Order status inquiry Order fulfillment notice Back-order notice Order return notice Catalog request Customer account update notice Promotion package details Customer charge adjustment Catalog update details Special promotion details New catalog details

Overview of Models Used in Analysis and Design

- Analysis phase activity named "define system requirements"
 - Logical models
 - Provide detail without regard to specific technology
- Design phase
 - Physical models
 - Provide technical details
 - Extend logical models

Models Created by Analysis Activities (Figure 5-4)

Models Used in Design (Figure 5-5)

Screen layout	Report layout	System flowchart	Structure chart
Database	schema Networl	k diagram Dep dia	loyment agram

Systems Analysis and Design in a Changing World, 4th Edition

Events, Activities, and Use Cases

Use Case

- An activity the system performs in response to a user request
- A "case" where the system is used by actor
- Techniques for identifying use cases
 - Identify user goals
 - Each goal at the elementary business process (EBP) level is a use case
 - EBP a task performed by one user, in one place in response to a business event, that adds measurable business value, and leaves system and data in consistent state
 - Event decomposition technique
 - CRUD analysis technique (create, read, update, delete)

Identifying Use Cases Based on User Goals (Figure 5-6)

User/actor	User goal
Order clerk	Look up item availability Create new order Update order
Shipping clerk	Record order fulfillment Record back order
Merchandising manager	Create special promotion Produce catalog activity report

Event Decomposition

- Business events trigger elementary business processes (EBPs)
- EBPs are at correct level of analysis for use cases
- Identify business events to decompose system into activities/use cases
- Event decomposition is, therefore, used by
 - Traditional approach to identify activities
 - OO approach to identify use cases

Types of Events

- Outside system
- Initiated by external agent or actor

Temporal

- Occur as result of reaching a point in time
- Based on system deadlines

♦ State

• Something inside system triggers processing need

Events Affecting a Charge Account Processing System that Lead to Use Cases (Figure 5-7)

Systems Analysis and Design in a Changing World, 4th Edition

External Event Checklist (Figure 5-8)

External events to look for include: ✓ External agent wants something resulting in a transaction ✓ External agent wants some information ✓ Data changed and need to be updated ✓ Management wants some information

Temporal Event Checklist (Figure 5-9)

Temporal events to look for include:

- ✓ Internal outputs needed
 - ✓ Management reports (summary or exception)
 - ✓ Operational reports (detailed transactions)
 - ✓ Internal statements and documents (including payroll)
- ✓ External outputs needed
 - ✓ Statements, status reports, bills, reminders

Identifying Events

- Can be difficult to determine
- Often confused with conditions and responses
- May be useful to trace a transaction's life cycle
- Certain events left to design phase
 - System controls to protect system integrity
 - Perfect technology assumption defers events

Sequence of Actions that Lead Up to Only One Event Affecting the System (Figure 5-10)

Systems Analysis and Design in a Changing World, 4th Edition

Sequence of "Transactions" for One Specific Customer Resulting in Many Events (Figure 5-11)

5

Events Deferred Until the Design Phase (Figure 5-12)

Events in the RMO case

- Important external events involve customers
 - Customer checks item availability, customer places order, customer changes or cancels order
- Other external events involve departments
 - Shipping fulfills order, marketing sends promotion to customer, merchandising updates catalog
- Temporal events include periodic reports
 - Time to produce order summary reports, Time to produce fulfillment summary reports

Information about Each Event in an Event Table:

Catalog of Information about Each Use Case (Figure 5-15)

RMO Event Table (Figure 5-6 partial)

Customer support system event table							
Event	Trigger	Source	Use case	Response	Destination		
 Customer wants to check item availability 	Item inquiry	Customer	Look up item availability	ltem availability details	Customer		
2. Customer places	New order	Customer	Create new order	Real-time link	Credit bureau		
an order				Order confirmation	Customer		
				Order details	Shipping		
				Transaction	Bank		
3. Customer changes or cancels order	Order change request	Customer	Update order	Change confirmation	Customer		
				Order change details	Shipping		
				Transaction	Bank		
4. Time to produce order summary reports	"End of week, month, quarter and year"		Produce order summary reports	Order summary reports	Management		
5. Time to produce transaction summary reports	"End of day"		Produce transaction summary reports	Transaction summary reports	Accounting		
6. Customer or management wants to check order status	Order status inquiry	Customer or management	Look up order status	Order status details	Customer or management		

"Things" in the Problem Domain

- Define system requirements by understanding system information that needs to be stored
- Store information about things in the problem domain that people deal with when they do their work
- Analysts identify these types of things by considering each use case in the event table
 - What things does the system need to know about and store information about?

Types of Things (Figure 5-17)

Procedure for Developing an Initial List of Things

- Step 1: Using the event table and information about each use case, identify all *nouns*
- Step 2: Using other information from existing systems, current procedures, and current reports or forms, add items or categories of information needed
- Step 3: Refine list and record assumptions or issues to explore
 - See Figure 5-18 for RMO example

Characteristics of Things

- Relationship
 - Naturally occurring association among specific things
 - Occur in two directions
 - Number of associations is cardinality or multiplicity
 - Binary, unary, ternary, n-ary
- Attribute
 - One specific piece of information about a thing

Relationships Naturally Occur Between Things (Figure 5-19)

Cardinality/Multiplicity of Relationships (Figure 5-20)

Attributes and Values (Figure 5-21)

All customers have these attributes:	Each customer has a value for each attribute:		
Customer ID	101	102	103
First name	John	Mary	Bill
Last name	Smith	Jones	Casper
Home phone	555-9182	423-1298	874-1297
Work phone	555-3425	423-3419	874-8546

Data Entities

 Things system needs to store data about in traditional IS approach

Modeled with entity-relationship diagram (ERD)

 Requirements model used to create the database design model for relational database

Objects

- Objects do the work in a system and store information in the object-oriented approach
- Objects have behaviors and attributes
 - Class type of thing
 - Object each specific thing
 - Methods behaviors of objects of the class
- Objects contain values for attributes and methods for operating on those attributes
- An object is encapsulated a self-contained unit

Data Entities Compared with Objects (Figure 5-22)

The Entity-Relationship Diagram (ERD)

Cardinality Symbols of Relationships for ERD

Expanded ERD with Attributes Shown

Customers, Orders, and Order Items

Figure 5-26 First shirt Customers, orders, and Second shirt Order 1 Feb 4 order items consistent with the expanded ERD Belt Boots Order 2 March 29 **First sandals** John Second sandals no orders for Mary yet! Mary **First sandals** Order 3 March 30 Second sandals Third sandals Sara

ERD with Many-to-Many Relationship

Many-to-Many Relationship Converted to Associative Entity to Store Grade Attribute

Figure 5-28

A refined university course enrollment ERD with an associative entity

Systems Analysis and Design in a Changing World, 4th Edition

RMO Customer Support System ERD (Figure 5-29)

The Class Diagram

- Unified Modeling Language (UML) diagram
- Domain model class diagram
 - Models things in the users' work domain
 - Used to define requirements for OO (very similar to entities in ERD)
- Design class diagram
 - Models software classes
 - Adds methods as behaviors
 - Used in the design activity

UML Class Symbol (Figure 5-30)

Systems Analysis and Design in a Changing World, 4th Edition

Simple Domain Model Class Diagram (Figure 5-31)

- No methods shown in domain model
 - Domain classes are not software classes
- Very similar to ERD in Figure 5-25
 - UML and domain model can be used in place of ERD in traditional approach

Multiplicity of Associations (Figure 5-32)

University Course Enrollment Domain Model Class Diagram (Figure 5-33)

Refined Model with Association Class and Grade Attribute (Figure 5-34)

Systems Analysis and Design in a Changing World, 4th Edition

More Complex Class Concepts

- Generalization/specialization hierarchies
 - General superclasses to specialized subclasses
 - Inheritance allows subclasses to share characteristics of their superclasses
- Whole-part hierarchies (object and its parts)
 - Aggregation parts can exist separately
 - Composition parts can't exist separately
 - Hand has fingers and thumb

A Generalization/Specialization Class Hierarchy for Motor Vehicles (Figure 5-35)

A Generalization/Specialization Class Hierarchy for RMO Orders (Figure 5-36)

Whole-Part Aggregation Relationships (Figure 5-37)

Systems Analysis and Design in a Changing World, 4th Edition

RMO Domain Model Class Diagram (Figure 5-41)

5

Design Class Diagram Notation: Software Classes with Methods

Course Enrollment Design Class Diagram with Association Class (Figure 5-39)

Systems Analysis and Design in a Changing World, 4th Edition

Expanded Course Enrollment Design Class Diagram (Figure 5-40)

Where You Are Headed (Figure 5-42)

Systems Analysis and Design in a Changing World, 4th Edition

Summary

- Analysis phase defines system requirements
- Models created to further learning process, reduce complexity, communicate with team members, and document requirements
- Many types of models used
 - Mathematical, descriptive, graphical
- Key early step in modeling is to identify and list
 - Events that require a use case in the system
 - Things users deal with in work environment

Summary (continued)

- Use cases (activities) are identified from user goals and business events that trigger elementary business processes
- Business events are memorable, can be described, and occur at a specific time and place
 - External events, temporal events, and state events
- Event table records event, trigger, source, use case, response, and destination
 - A catalog of information about each use case

Summary (continued)

- "Things" are what user deals with and system remembers, such as customer placing an order
- Traditional approach uses entity-relationship diagrams (ERD) for data entities, attributes of data entities, and relationships between entities
- Object-oriented approach uses UML class diagrams for classes, attributes, methods of class, and associations among classes
 - Domain model class diagram (requirements activity)
 - Design class diagram (design activity)