Evolution of Computing

- 1950's
 - computers first appeared onto the commercial scene
- difficult to use, cumbersome, unpredictable • 1970's
- first personal computers
- provided interactive computing power for individual users at a low cost
- _ wide variety of people began using computer systems
- Man-Machine Interface (MMI)
- Mid 1980's
- Human-Computer Interaction (HCI)

Definition of HCI

Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them

Multidisciplinary Science

- Computer science
 - provide knowledge about the capability of the technology and idea about how this potential can be harnessed
- Psychology and cognitive science
 - understanding human behaviour and the mental processes that underlie it (information processing)
 - understanding the nature and causes of human behaviour in the social context
- Sociology and anthropology interactions between technology, work, and organization
- Industrial design
- interactive products
- Ergonomics
- · understand the user's physical capabilities
- Linguistics; artificial intelligence; business; graphics design; technical writing

Computer Science Perspective

• Focus on the interaction

- between one or more humans
- and one or more computational machines

Use and Context of Computers

Problems of fitting computers, their users, and the context use together

- Social organization and work
 - understand the nature of work and how human and technical systems mutually adapt
 - · humans are social beings
 - · models of human activity (small groups, organizations)
- Application areas
 - characteristics of application domains · document processing (word processors, spreadsheets)
 - · communication tools (email, conferencing, news)
 - embedded systems (TV's, VCR's, microwave)
- Human-machine fit and adaptation
- improve the fit between the designed object and its use
- systems adapt to users (customization)
 - · users adapt to the systems (training, ease of learning)
 - user guidance (help, documentation, error-handling)

Human Characteristics

To understand how humans process information structure actions communicate, and physical and psychological requirements

Human information processing

- theory of memory, perception, motor skills, attention, vigilance, problem solving, learning and skill acquisition, motivation human diversity
- Language, communication and interaction
 - syntax, semantics, pragmatics, conversational interaction, specialized languages
- Ergonomics
 - physiological characteristics of people and their relationship to workplace and the environment
 - arrangement of displays and controls; cognitive and sensory limits; effects of display technologies; fatigue and health; furniture and lighting; design for stressful and hazardous environments; design for the disabled, ...

Computer system and interface architecture

Specialized computer components for interacting with people

- Input and output devices
- mechanics of particular hardware devices and performance characteristics
- Dialogue techniques
- basic software architecture and techniques for interacting with humans · dialogue inputs: outputs: interaction styles
- Dialogue genre
- conceptual uses to which the technical means are put interaction and content metaphors: transition management: aesthetics

Computer system and interface architecture

Specialized computer components for interacting with people

- ٠ Computer graphics computer graphic concepts useful to HCI · 2D and 3D geometry; modeling; colour representation
- Dialogue architecture software architecture and standards
 - window managers; interface toolkits; look and feel; standardization

Development Process

The construction and evaluation of human interfaces

- . Design approaches
 - graphic design basics; software engineering; task analysis; industrial design
- Implementation techniques and tools
- tools for implementing interfaces
 - prototyping techniques; object-oriented methods; application/device independence
- · Evaluation techniques
 - philosophy and scientific methods of evaluation
 - productivity; measure of merit (ie; time, errors, learnability, preference); formative and summative evaluation techniques (ie. field studies,
 - interviewing, questionnaires, system logging)
- · Example systems and case studies

HCI Goals

- · To produce
- usable systems
 - safe systems - functional systems
- · Usable vs. Useful

Why are user interfaces important in today's computer systems?

Why are user interfaces important?

· Business view:

- · help human be more productive/effective
- · human costs outweigh hardware and software costs
- · Personal view: · people want computers to perform as appliances
- · Marketplace view:
 - wide variety of people now using computers

 - expect "easy to use" systems
 or tolerant of poorly designed systems
 heterogeneous group
 - if people aren't satisfied they will chose a different product
- · System view: · complexity of humans, computers, and interface between the two

Why are user interfaces important?

- · Human factors view:
- humans have limitations and errors are costly
- Social view:
 - Computers contribute to critical parts of our society and cannot be ignored
 - educate our children
 - · take medical history and provide expert advice · handle credit and financial information
 - · control air traffic control and ground traffic flow
 - book travel
 - · control chemical/oil/nuclear plants
 - · control space missions
 - assist humans with everyday tasks (office automation)
 - · control complex machines (aircraft, space shuttles, super tankers)
 - · help control consumer equipment (cars, washing machines, microwave)
 - entertainment

Motivations

- · Life-critical systems
- · Air traffic control, nuclear reactors, power utilities, police & fire dispatch systems
- · Industrial and commercial uses Banking, insurance,order entry, inventory management, reservation, billing, and point-of-sales systems
- · Office, home, and entertainment applications Word processing, electronic mail, computer conferencing, and video game systems
- · Exploratory, creative, and cooperative systems
- Database, artist toolkits, statistical packages, and scientific modeling systems

Why are user interfaces difficult to design?

HCI Challenges

- · How to keep abreast of changes in technology
- How to ensure that their designs offer good HCI as well as harnessing the potential functionality of the new technology.

Why have an interface design process?

63% of large software projects go over cost

- managers gave four usability-related reasons
 - users requested changes overlooked tasks
 - users did not understand their own requirements
 - insufficient user-development communication and understanding

Usability engineering is software engineering

- pay a little now or a lot later
- too easy to jump into a detailed design that is: founded on incorrect requirements
- had inappropriate dialogue flow
 not easilty used
 never tested until it is too late

What are the most common user interface techniques uses in today's systems?

Direct manipulation of graphical objects

- Sketchpad (Sutherland, 1963)
- · manipulation of objects using a light pen · grabbing objects, moving them, changing size and using constraints
- Reaction Handler (Newman, 1966/1967)
- first "widget"
- AMBGIT (MIT Lincoln Labs, 1968)
- iconic representation, gesture recognition, dynamic menus, selection of items by a pointing device
- Pygmalion (Canfield, 1975) · coined the term "icons"
- Bravo & Draw (Xerox PARC, 1970's)
- · how objects and text are selected, opened and manipulated WYSIWYG
- Dynabook (Kay, 1977)
 - · direct manipulation interfaces for everyone
- · followed by commercial systems: Xerox Star, Apple Lisa, and the Macintosh
- Shneiderman (1982)
- · coined the term "direct manipulation"

Mouse, Windows, Hypertext and **CSCW**

- Englebart (1968) Augmenting Human Intellect - Mouse
 - Multiple tiled windows
 - hypertext
 - CSCW remote participants at various sites

• Englebart (1962)

- Word Processor
- automatic word wrap, search and replace, macros, scrolling text, move, copy and delete characters, words or blocks of text
- Alan Kay
- Overlapping windows (1969)

Early Applications

- Drawing
 - Sketchpad (Sutherland)
 - Superpaint, MacPaint, and MacDraw
- Text editing
 - Englebart (1962)
 - Bravo (WYSIWYG)
 - Star, LisaWrite, MacWrite
- Spreadsheets
- VisiCalc (Frankston and Bricklin 1977-1978 MIT)
- Hypertext
 - · Vannevar Bush MEMEX · Ted Nelson coined the term (1965)
 - · Englebart (1968)

Two most influential commercial graphical user interface systems:

- XEROX STAR (1981)
- APPLE LISA (1982)

The best interface design work in the world may be wasted if it is not tightly coupled with a timely product that offers significant functionality at a reasonable price, skillfully marketed to appropriate customers.

8010 Star Information System

- conceived in 1975 and released in 1981
- "new personal computer designed for offices ... intended for business professionals who handle information
- System Development Division at Xerox
- Alto Xerox Palo Alto Research Center (PARC)
- bitmapped screen, windows, mouse-driven interface, icons
- changed the notion of how interactive systems should be designed
- high quality interface
- many of the design aspects were done right

Xerox Star - user interface features

- desktop metaphor
- users conceptual model
- direct manipulation
 – emphasizing recognition over recall
- property or option sheet

 to specify the appearance of objects
- WYSIWYG (what you see is what you get)
- generic commands with dedicated keys
- high degree of consistency
- few modes
- tew modes
- · icons and iconic file management
- progressive disclosure

Emphasis on good graphic and screen design

- Appearance and placement of screen objects
- illusion of manipulable objects
 - usual task is to present information for passive viewing
 - needed to present information for manipulation as well
- visual order and user focus

 intensity and contrast to draw the user's attention to the most important features of the display
- revealed structure
- can show "structure" or "non-printing characters"
- consistent and appropriate graphic vocabulary
- match the medium
 - work within the constraints of the system

Xerox Star - features

- Distributed computing
 - connect personal workstations with a local area network and attach shared resources to the network
- mouse
- Star handled the mouse at a very low level to improve performance
- two button mouse
- · bitmapped display
- windows
 - first commercial system to provide windows
 - issue of overlapping windows
- integrated applications
- focus was on document processing so all tools were integrated into that environment

Xerox Star - Why wasn't it successful?

- Market not available? (trailblazer?)
- cost?
- \$15,000
- star's benefits were not perceived to be worth the additional cost
- limited functionality
- lacked an open architecture
- · perceived as slow

The Apple Lisa

- · Conceived in 1978, released in 1983
- · a product with a similar interface to the Star
 - it is said that Steven Jobs, Apple's founder and chairman, visited Xerox PARC in 1979
- · the Star was more ambitious than the Lisa in networking and distributed computing
- Lisa was positioned between an office system and a personal productivity tool
- less expensive (\$10,000)

Lisa - user interface features

- · desktop metaphor
- typical user was a business person whose day was constantly interrupted with immediate requests to do other things
- mouse & windows (after Xerox visits)
- consistency between all Lisa applications •
- multi-tasked environments - multiple windows to display different types of work
- users select document and Lisa would determine the application needed

Lisa - Desktop managers

- Desktop icons
 - display too small
 - dragging would be cumbersome if can't find wastebasket
 - locating documents in nested folders difficult
- Document browser
 - rejected hierarchical filing because wanted to ease placing/finding a document
 - used attribute filters to help display appropriate documents
 - · was not obvious and was difficult for some operations
- Twenty Questions Filer
 - dialog prompt for document parameters system faster and more accurate but was still abstract and wasn't FUN!
- Dataland
- · too difficult to manage large number of documents
- Desktop icons (direct manipulation)
- simplicity and approachability!

Lisa - critical factors

- from the beginning focus on the USER!
- interface developed through experience, not programmer • intuition
- extensive user testing on representative users
- withdrawn from the market after three years ٠ - cost
 - confused product positioning
 - inadequate application base

The Apple Macintosh

- · January 1984
- approximately \$2,500
- SUCCESSFUL!
 - Did not need to trailblaze
 - a second-general Lisa and could learn from previous experience
 - aggressively priced
 - partially open architecture and a powerful developer's toolkit
 - · lead to widespread availability of software applications
 - desktop publishing market
 - · excellent graphics and reasonably priced laser printers marketing experience, distribution channels, and experience in sales and support

Now PC's are dominating the computer market over Macintosh. Why?

A Case Study in Interface Design

The CHI '89 Information Kiosk Gitta Salomon

Project Goals

- to explore the interface design process
- make use of multimedia
- expand the team's understanding of what constitutes a successful interface design
 - through observation of a wide range of people interacting with the system

An overview of the system

** Insert Figure 1, page 25 **

Design Methodology

- Iterative design process, based on successively enhanced prototypes
- initial design specification phase
 rough paper sketches and screen mock-ups were created
- storytelling prototype phase

 the earlier designs were refined and used to "tell stories" about the system's functionality to others
- functional prototype phase

 the prototypes were make semi-functional and informal testing was done
 - uncovered several problems which significantly effected usability

Initial design specification phase

- · early designs were based on the team's perspective
- Used visual specifications as opposed to textual
 - early design were communicated with through paper sketches or HyperCard mock-ups
 - often made use of visual placeholders to demonstrate possible screen design, functionality and sequencing
 - roughness of the design prompted more modifications
- Design sessions around the computer
 easy modifications
 - use visual methods to demonstrate and idea
 - annotate problems directly on the interface
 - maintained the perspective of the user

Storytelling prototype phase

- Prototypes from the initial phase were expanded on to create sets of screens showing interaction sequences
- The enhanced designs were then show to colleagues and friends (outside of the project)
 presenter would describe the process and events
 - could also elicit feedback by asking what would happen next

Functional prototype phase

- semi-functional prototypes were informally tested with users and quickly reworked based on feedback
 - goal was to improve the interface as much as possible through rapid redesign and retesting, before all of the functionality was put in place
- discount usability testing
 - subjects asked to perform specific tasks and items of interest
 and the end of each session an interview was used to collect general impressions
- most of the problems uncovered were related to misinterpreted functionality and were relatively easy to correct through visual representation

Example 1: representing functionality

** Insert Figure 4(e), page 28 **

Example 1: Solution

** Insert Figure 4(f), page 28 **

Example 2: The "Summary" button

** Insert Figure 4(e), page 28 **

Example 2: Solution

** Insert Figure 4(f), page 28 **

Example 3: Yearbook navigation

** Insert Figure 7, page 31 **

Example 3: Solution or not?

** Insert Figure 8, page 31 **

Use of trace data

- To explore usage patterns to uncover where, in practice, the interface design was successful and where it was flawed

 unobtrusive
 - anonymous
 - difficult to capture when one session ended and the next began
 - over 5,600 files were created
- Design of selectable items:
 - 21% of users clicked on the field containing a bulleted list
 - (which wasn't active!!)
 - similar behaviour found on other cards
 - design team had carefully established conventions about clickable items
 - Indicates that bulleted lists might carry expectations of interactivity in the computer domain

Use of trace data (continued)

- · Intelligent defaults
 - designers assumed that when performing a time sort, the user would be most interested in the current or near future time slots
 - verified by the trace data
 in more than half the cases, users made their selection from the screen they were shown first
- Showed the lack of use of the index button (only 3%)
- Improving trace data
 - capture coordinates of a mouse click for more precise information of what was clicked on
 - these types of additions also add to the difficulty of analyzing the trace data

Principles used in this case study:

- · user-center design
- progressively more refined designs and prototypes
- benefits of low-level, medium-level and high-level prototypes
- early and frequent user testing
- three design stages
 - initial design specification
 - storytelling prototype phasefunctional prototype phase
- system logging

- Readings for Tuesday, Jan. 30th
- Getting to know users and their tasks
 - Clayton Lewis and John Riemanon-line document
 - ftp://ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-Design-Book/chap-2.v-1
- How to design usable systems (excerpt)
- Learning from Notes: Organizational Issues in Groupware
 Implementation