
Copyright c
�

1994 Mark J. Kilgard. All rights reserved.

PUBLISHED IN THE

NOVEMBER/DECEMBER 1994 ISSUE OF The X Journal.

OpenGL
���

and X, Column 1:
An OpenGL Toolkit

Mark J. Kilgard �
Silicon Graphics Inc.���	��
��
�����������

May 20, 1997

A much more complete introduction to GLUT can be found in
my book titled Programming OpenGL for the X Window Sys-
tem (Addison-Wesley, ISBN 0-201-48359-9). Chapter 4 con-
tains an expanded tutorial covering the entire GLUT 3 pro-
gramming interface. Chapter 5 explains numerous interesting
GLUT-based OpenGL programs. An appendix provides a com-
plete reference for the GLUT programming interface.

Welcome to the “OpenGL and X” column. This column is
the outgrowth of my three-part series on programming OpenGL
with the X Window System. The purpose of the column is
to continue explaining how to put interactive 3D graphics into
your X programs.

In the past year, there’s been remarkable progress adopt-
ing OpenGL as the premier Application Programming Interface
(API) for interactive 3D graphics. Major workstation vendors
are supplying OpenGL for their X workstations: Digital, IBM,
and Silicon Graphics. Independent software vendors (ISVs)
have or are readying ports of OpenGL for Sun and Hewlett-
Packard workstations. And OpenGL is not limited to the X
world. OpenGL is also supported in a new version of IBM’s
OS/2 and in Microsoft’s Windows NT 3.5 (code named Day-
tona). A very exciting development is the announcement of cus-
tom graphics chips designed specifically for OpenGL rendering.
These chips, like the GLint chip from 3Dlabs, promise to make
OpenGL graphics inexpensive and accessible.

These developments point the way for OpenGL to be the
catalyst that brings interactive 3D graphics into the computing
mainstream. The past decade has shown that it takes a tech-
nically mature software interface with broad-based support to
launch new computer technologies. For example, PostScript
�
Mark graduated with B.A. in Computer Science from Rice University and

is a Member of the Technical Staff at Silicon Graphics. He can be reached by
electronic mail addressed to mjk@sgi.com

has changed the way we all think about computer generated
hardcopy. And the TCP/IP networking protocols have opened
the Internet to the world. PostScript and TCP/IP didn’t invent
laser printing or networking, but these two standards made pos-
sible the widespread adoption of the technologies they enabled.
OpenGL will do the same for 3D graphics.

This column will assume some familiarity with OpenGL. For
readers who need this background, I encourage you to read The
X Journal back issues containing the original “OpenGL and X”
series. Also you should be able to find The OpenGL Program-
ming Guide and The OpenGL Reference Manual (often called
the “red” and “blue” books respectively because of the color of
their covers) in most computer literate bookstores.

Because OpenGL is window-system indepen-
dent (the OpenGL API can work just as well for X as it does
for Windows NT or OS/2), an OpenGL program uses the win-
dow management functions of its host window system. In the
“red” book, OpenGL examples were presented using the AUX

library. AUX is a window-system independent toolkit for using
OpenGL. The AUX interface lets you open a single window, ren-
der OpenGL, and handle basic input, but that is about the extent
of its functionality. It’s good for examples but not appropriate
for anything much more sophisticated.

Two alternatives to AUX are using Motif or Xlib to write your
OpenGL applications. Either alternative works. In practice,
Motif is likely to be the window system API most X program-
mers will use for sophisticated OpenGL applications. Unfor-
tunately, both Motif and Xlib are rather complex. Many pro-
grammers wishing to explore 3D graphics with OpenGL will
want something in between the toyish feel of AUX and the com-
plexity of Motif or Xlib. That’s where this issue’s column helps
out: supplying a reasonable toolkit to explore OpenGL. Future
columns will use the described toolkit to demonstrate specific
OpenGL functionality like lighting and texturing.

1

The
�

toolkit I describe is named GLUT, short for the openGL
Utility Toolkit. The API for GLUT is designed to be simple
and straightforward. Unlike more complex APIs like Xlib or
Motif, very little setup is needed to begin displaying graphics.
Also the GLUT API avoids obvious window system dependen-
cies. The intent is that a GLUT program could be recompiled for
OS/2 or NT if a GLUT implementation for those window sys-
tems was available. An implementation of GLUT for X is avail-
able through the Internet. �

So what does GLUT do for you? GLUT supports the following
functionality:

� Multiple windows for OpenGL rendering.

� Callback driven event processing.

� An “idle” routine and timers (like X Toolkit work proce-
dures and timeouts).

� Standard X command line argument processing.

� A simple pop-up menu facility.

� Miscellaneous window management functions.

All the routines in the API begin with glut ; constants begin
with GLUT . This article won’t describe the entire API, just the
basics you’ll need to begin using GLUT to explore OpenGL.

GLUT does have limitations and isn’t suitable for every pur-
pose, but I think you’ll find it a reasonable vehicle to explore 3D
graphics using OpenGL without getting bogged down in writing
X or Motif code. 3D should be fun; not a chore.

A Short GLUT Example

Figure 1 is a simple GLUT program that draws a lighted sphere.
The program merely renders the sphere when the window needs
redrawing. But the example demonstrates the basics of opening
a window with GLUT and rendering an image into it.

Briefly, I’ll explain each GLUT call in the example.

glutInit(&argc, argv);

This routine initializes GLUT. Most importantly, it processes
any command line arguments GLUT understands (for X, this
would be options like -display and -geometry). Any
command line arguments recognized by GLUT are stripped out,
leaving the remaining options for your program to process. Ev-
ery GLUT program should call glutInit before any other
GLUT routine.

glutInitDisplayMode(GLUT_DOUBLE |
GLUT_RGB| GLUT_DEPTH);

�
To obtain GLUT, use anonymous ftp to sgigate.sgi.com and re-

trieve the files in the pub/opengl/xjournal/GLUT directory. The library
source code, documentation, and example source code are all provided. You’ll
need an OpenGL development environment to compile and use GLUT.

#include <GL/glut.h>

GLfloat light_diffu se[] = { 1.0, 0.0, 0.0, 1.0 };
GLfloat light_posit ion[] = { 1.0, 1.0, 1.0, 0.0 };
GLUquadricObj *qobj ;

void display(void)
{
 glClear(GL_COLO R_BUFFER_BIT | GL_D EPTH_BUFFER_BIT);
 glCallList(1); /* render sphere di splay list */
 glutSwapBuffers();
}

void gfxinit(void)
{
 qobj = gluNewQu adric();
 gluQuadricDrawS tyle(qobj, GLU_FILL);
 glNewList(1, GL _COMPILE); /* creat e sphere display li st */
 gluSphere(qobj, /* radius */ 1.0,
 /* slices * / 20, /* stacks */ 20);
 glEndList();
 glLightfv(GL_LI GHT0, GL_DIFFUSE, l ight_diffuse);
 glLightfv(GL_LI GHT0, GL_POSITION, light_position);
 glEnable(GL_LIG HTING);
 glEnable(GL_LIG HT0);
 glEnable(GL_DEP TH_TEST);
 glMatrixMode(GL _PROJECTION);
 gluPerspective(/* field of view i n degrees */ 40.0,
 /* aspect r atio */ 1.0,
 /* Z near * / 1.0, /* Z far */ 10.0);
 glMatrixMode(GL _MODELVIEW);
 gluLookAt(0.0, 0.0, 5.0, /* eye is at (0,0,5) */
 0.0, 0.0, 0.0, /* cent er is at (0,0,0) */
 0.0, 1.0, 0.); /* up i s in +Y direction * /
 glTranslatef(0. 0, 0.0, −1.0);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
 glutCreateWindow("sphere");
 glutDisplayFunc(display);
 gfxinit();
 glutMainLoop();
}

Figure 1: Program using GLUT to render a lighted sphere using
OpenGL. The GLUT specific lines are in bold; notice that very
little GLUT-code is required.

When a window is created, its type is determined by GLUT’s
current display mode. The display mode is a set of indicators
that determine the frame buffer capabilities of the window. The
call to glutInitDisplayMode means a subsequently cre-
ated window should be created with the following capabilities:

� Double buffering.

� An RGB color model (TrueColor).

� A depth buffer or Z buffer (for hidden surface elimination).

Other indicators like GLUTSTENCIL could be combined into
the display mode value to request additional capabilities like a
stencil buffer.

glutCreateWindow("sphere");

Create a window for OpenGL rendering named “sphere.” If a
connection
to the X server hasn’t yet been made, glutCreateWindow
will do so and make sure that OpenGL is supported by the X
server. Details such as picking the correct visual and colormap
and communicating information like the window name to the
window manager are handled by GLUT. Along with the win-
dow, an associated OpenGL rendering context is created. This
means each window has its own private set of OpenGL state.

2

While
�

this example doesn’t use it, glutCreateWindow
actually returns an integer identifier for the window. For an ap-
plication with multiple windows, this lets you control multiple
windows. Because of GLUT’s design, you will rarely need a
window’s identifier. This is because GLUT keeps a current win-
dow as part of its state. Most window operations implicitly af-
fect the current window. When a window is created, the current
window is implicitly set to the new window.

For example:

glutDisplayFunc(display);

will register the display function as the routine to be called
when the current (and just created) window needs to be drawn.

Also notice that OpenGL routines that initialize OpenGL’s
state in gfxinit() implicitly affect the OpenGL context for
the current window.

If you do need to change the current window, you can call
glutSetWindow(winnum) , where winnum is a window
identifier. You can also call glutGetWindow() that returns
the current window identifier.

Whenever a callback is made for a specific window, the
current window is implicitly set to the window prompting the
callback. So when the display callback registered with
glutDisplayFunc is called, we know that GLUT has implic-
itly changed the current window to the window that needs to be
redisplayed. This means display can call OpenGL rendering
routines and the routines will affect the correct window.

glutMainLoop();

This routine serves the same purpose as the X Toolkit’s
XtAppMainLoop routine; it begins event processing and
maps any windows that have been created. It never exits. Call-
back functions registered with GLUT are called as necessary.
For example, the display routine in the example will be
called whenever Expose events are received by the program
from the X server.

glutSwapBuffers();

When we created the window, the display mode was set to re-
quest a double buffered window. After display renders the
sphere using OpenGL routines, glutSwapBuffers is called
to swap the current window’s buffers to make the image ren-
dered into the back buffer visible. So the sphere is displayed
without the program’s user seeing the rendering in progress.

Supporting more than one window is easy. To create a second
window with the same red sphere add the following calls before
glutMainLoop :

glutCreateWindow("a second window");
glutDisplayFunc(display);
gfxinit();

Because of
the implicit update of the current window, display will also

Figure 2: The two windows generated by the modified version
of code in Figure 1.

be registered for the second window and gfxinit will initial-
ize the second window’s OpenGL context. And remember that
when a callback like display is called, the current window is
implicitly set to the window needing the callback, so the render-
ing done by display will be directed into the correct window.
The result of the output of the resulting program can be seen in
Figure 2.

User Input and Other Callbacks

An interactive 3D program needs a way to get input from the
user. GLUT provides callback routines to be registered for each
window for keyboard, mouse button, and mouse motion input.

glutKeyboardFunc(keyboard);

This routine registers a callback for keyboard input for the cur-
rent window. The function keyboard might be written like
this:

void keyboard(unsigned char key,
int x, int y)

{
printf("key ‘%c’ pressed at (%d,%d)\n",

key, x, y);
}

If the keyboard callback is registered for a window, the
keyboard routine will be called when a key is pressed in the
window. The ASCII character generated by the key press is
passed in along with the location of the cursor within the win-
dow (relative to an origin at the upper left hand corner of the
window).

glutMouseFunc(mouse);
glutMotionFunc(motion);

3

These� routines register callbacks for mouse button changes and
mouse motion (when buttons are down) for the current window.
The following are example callbacks:

void mouse(int btn, int state,
int x, int y)

{
printf("button %d is %s at (%d,%d)\n",

btn, state == GLUT_DOWN? "down" : "up",
x, y);

}

void motion(int x, int y)
{

printf("button motion at (%d,%d)\n",
x, y);

}

The callbacks that can be registered with GLUT are not
limited to input devices. The already introduced glut-
DisplayFunc routine lets you know when to redraw the win-
dow. The callback registered by glutReshapeFunc is called
when a window is resized. A default handler exists for handling
window resizes that calls glViewPort(0,0,w,h) , where w
and h are the new width and height of the window. This makes
the entire window available for OpenGL rendering. Usually this
is appropriate, but you can call glutReshapeFunc to specify
your own reshape callback if necessary.

Also callbacks can be registered for timeouts and when the
program is “idling.” A program doing continuous animation re-
draws each new scene as fast as the system will permit. This can
be done by specifying an “idle” function using:

glutIdleFunc(idle);

The function idle will be called whenever there is nothing else
to do. If each time idle is called the program renders a new
scene, the window is continuously animated. Event processing
happens between calls to your idle function so be careful not
to spend too much time in your idle function or you risk com-
promising your program’s interactivity. There can be only one
idle function registered at a time. If you call glutIdleFunc
with NULL, the idle function is disabled. Idle callbacks are very
much like X Toolkit work procedures.

glutVisibilityFunc(visibility)

Because a program doing continuous animation is wasting its
time if the window it is rendering into is completely obscured
or unmapped, GLUT’s glutVisibilityFunc routine reg-
isters a callback for the current window that is called when the
window’s visibility status changes. An example visibility call-
back:

void visibility(int status)
{

if(status == GLUT_VISIBLE)
glutIdleFunc(animate);

else /* stop animating */
glutIdleFunc(NULL);

}

Another type of callback is the timer callback that is regis-
tered by calling glutTimerFunc like this:

glutTimerFunc(1000, timer, value);

The first parameter indicates the number of milliseconds to wait
before calling the timer callback function. The third param-
eter is an integer that will be passed to the timer callback. You
can register multiple timer functions. Timer callbacks are very
much like X Toolkit timeout callbacks.

Menus

A common need for 3D programs is to turn on or off various
modes based on user input. Pop-up menus provide a simple
mechanism for this type of input.

GLUT provides an easy-to-use API for cascading pop-up
menus. Menus can be created, changed, and “attached” to a
mouse button within a window. If a menu is attached to a button
in a window, pressing the button will trigger the pop-up menu.
If a menu entry is selected, the callback function for the menu
is called. The callback is passed the associated value for the se-
lected menu entry. Here’s an example:

glutCreateMenu(choice_selected);
glutAddMenuEntry("Enable lighting",1);
glutAddMenuEntry("Disable lighting",2);
glutAttachMenu(GLUT_RIGHT_BUTTON) ;

The result is a menu with two options to enable or dis-
able lighting. The menu is associated with the current win-
dow and will be triggered when the right mouse button is
pressed within the window. Selecting a menu item will call the
choice selected callback that might look like:

void choice_selected(int value)
{

if(value == 1) glEnable(GL_LIGHTING);
if(value == 2) glDisable(GL_LIGHTING);
glutPostRedisplay();

}

Notice that instead of naively
redrawing the window with lighting appropriately enabled or
disabled, glutPostRedisplay is called. The advantage of
“posting a redisplay” instead of performing the redraw explic-
itly is that removing the pop-up menu is likely to damage the
current window. A “posted redisplay” can be potentially com-
bined with any pending Expose events caused by unmapping
the pop-up menu. Multiple calls to glutPostRedisplay
!

Actually GLUT will try to put the pop-up menu in the overlay planes (if
overlays are supported) to avoid window damage normally generated by pop-up
menus.

4

Figure 3: An example of GLUT cascaded pop-up menus.

and any pending Expose events will be combined if possible
to minimize the redisplays necessary.

Like windows, GLUT maintains a current
menu and the glutCreateMenu routines returns an integer
identifier for the menu being created. The glutSetMenu and
glutGetMenu routines set and query the current menu. And
menu callbacks implicitly set the current menu to the menu gen-
erating the callback. The routines glutAddMenuEntry and
glutAttachMenu operate on the current menu.

The menu identifier of a submenu is required for creating cas-
caded menus where one menu item can trigger the display of a
submenu. Here’s an example of creating a cascaded menu:

submenu = glutCreateMenu(polygon_mode);
glutAddMenuEntry("Filled", 1);
glutAddMenuEntry("Outline", 2);
glutCreateMenu(main_menu);
glutAddMenuEntry("Quit", 666);
glutAddSubMenu("Polygon mode",

submenu);
glutAttachMenu(GLUT_RIGHT_BUTTON);

Figure 3 shows what the above menu would look like. Menus
can be cascaded arbitrarily deeply (but menu recursion is not
permitted).

Routines exist to modify menu items in the current menu.
The glutChangeToMenuEntry and glutChangeTo-
SubMenuroutines can be used to change an existing menu item
in the current menu to an entry or submenu respectively. Menu
items can also be deleted using glutRemoveMenuItem .

When menus are activated, the GLUT main loop contin-
ues to process events, handle timeouts, and call the idle
function. Sometimes a program might want to suspend ac-
tivity like the idle callback when a menu is in use. The
glutMenuStateFunc can register a callback for this pur-
pose, where the callback routine might look like:

void menu_status(int status)
{

if(status == GLUT_MENU_IN_USE)
glutIdleFunc(NULL);

else
glutIdleFunc(animate);

}

GLUT’s menu support provides an easy way to let users see
available options and select between various modes. In con-
junction with the other input and window management support
in the GLUT library, a programmer can quickly develop pro-
grams to explore OpenGL and 3D programming.

Next Time

In future columns, look forward to using the GLUT toolkit to
demonstrate the wide variety of 3D graphics capabilities sup-
ported by OpenGL. The next column will explain OpenGL’s
lighting model. In the meantime, feel free to obtain the source
code to GLUT and explore its documentation and examples.

5

