
Page 1 of 17

Geometrical Transformations
2D Transformations

• want to change the position, orientation, and
size of objects (for most applications)

• what do we want to transform?

1. All points - pt. by pt. works always but
is very slow.

2. Vertices (endpts.) only - good for lines,
not for curves.

• assume objects consist of straight line
segments. Transform endpoints and redraw
the segments. (curved lines are approx. by
straight segments or splines) So we are just
manipulating the endpoints.

Figure
description

Figure
description

DisplayTransform
Generate
primitive

Generate
primitiveTransform Display

Page 2 of 17

Transformations

Points and Vectors will be written as columns

1. Translation (moving an object)

• move points by vector addition

Page 3 of 17

 Scaling (changing the size)

• shrink or stretch distances by multiplication

 kx=ky for uniform scaling
 kx≠ky differential scaling

 Note: scaling is about the origin
 “house is smaller and closer to the origin”

Page 4 of 17

Rotation (changing position angle)

• change position (angle) by multiplication and
addition

• positive angles are measure counterclockwise
• for negative angles:

⇒ cos(-θ) = cos(θ)
⇒ sin(-θ) = -sin(θ)

Page 5 of 17

How is the rotation equation derived?

Page 6 of 17

2. Shearing (changing slant of the object)
• useful for italics

• change slant by multiplication and addition

Slant in x

Slant in y

Page 7 of 17

Summary:

Translation P’ = T + P
Scaling P’ = S ⋅ P
Rotation P’ = R ⋅ P
Shearing P’ = SH ⋅ P

Unfortunately, translation is different (addition)
and we would like to treat all transformations in a
consistent way to they can be easily combined.

Problem:

Page 8 of 17

 Homogeneous Coordinates
• add a third coordinate to a point
• instead of (x, y) => (x, y, W)

• (x’, y’, W’) and (x, y, W) are the same point if
one is a multiple if the other

• there are an infinite number of homogeneous
coordinates

• in general [x y W], W ≠ 0, represents a point
(x/W, y/W) – Cartesian coordinates

• W=1 is normalized
• W=0 are points at infinity

Typically triples of coordinates represent points in
3D space (x, y, z) but here we are using them to
represent points in 2D space (x, y, W)

• all triples (tx, ty, tW) where t ≠ 0 form a line
in 3D space

• (x, y, 1) for all x & y form a plane in 3D space

Page 9 of 17

 General Transformation Matrix

Page 10 of 17

 Symmetries (reflection about axis)

 a,b,c,d rotation, reflection, shearing, and scaling
 p,q translation
 s uniform scaling
 p,q=0 (will be used in 3D)

AA’
y

x

A

A’

y

x

A

A’

y

x

Page 11 of 17

 Affine transformations
• preserve parallelism but not lengths or

angles
Rigid body transformations

• preserves angles and lengths
• object (“body”) is not distorted in any way
• translation? scale? rotate? shear?
• products of rigid body transformations?

Page 12 of 17

Composition
• combine R, S, T, & SH to produce desired

general results

Example: Rotation about an arbitrary point P1

• translate P1 to origin
• rotate
• translate back

(T2 ⋅ (R ⋅ (T1 ⋅ P)))
• matrix multiplication is associative
• we can express the three transformations as

one matrix:
(T2 ⋅ (R ⋅ T1))⋅ P

Page 13 of 17

Makes a BIG difference when transforming many
points

• more efficient
• one composed transformation rather than

three matrix operations

Example: Scale, rotate, & position with P1 as the
center for rotation and scaling

T(x2,y2) ⋅ R(θ) ⋅ S(Sx, Sy) ⋅ T(-x1, -y1)

While matrix multiplication is in general, not
commutative, it can be seen that it holds for this
example.

Page 14 of 17

However, other times must be careful of the order
in which the transformations are applied, for
example.

1. T1 reflect about y
 T2 translate (m,0)

2. T2 then T1, NOT commutative (results
 differ with order)

NOTE:
• In the text and in our examples we are

premultiplying transformation matrices with
points:

P’ = T2 ⋅ T1 ⋅ P T = … T3 T2 T1

• We could also postmultiply:;
P’ = P ⋅ T1

T ⋅ T2
 T T = T1 T2 T3 …

* we must transpose matrices to go from one
convention to the other

Page 15 of 17

Window to Viewport Transformation

• World-coordinate system: “where the objects reside”
 (also called world space, object space)

• Screen-coordinate system: “display or output objects”
 (screen space, device coordinates, image space)

 OR

• World-coordinate WINDOW: rectangular region in
world-space.

• Screen-coordinate VIEWPORT: rectangular region in
screen-space.

Page 16 of 17

Given a window & viewport, what is the transformation
matrix that maps the window from world coordinates
into the viewport in screen coordinates

Three steps:
• Translate to origin (-xmin, -ymin)

• Scale window to size of viewport

• Translate to final position (umin, vmin)

Page 17 of 17

Clipping is generally combined with this mapping

