
Clipping

• Want to “clip” objects being drawn that protrude
past the bounds of the display/window

• Why?
• wrap-around (on older devices)
• waste of time drawing objects that aren’t

going to be visible (inefficient)
• Can be accomplished

• before scan conversion - analytically
(ex: flt. Pt. Intersection)

• during scan conversion (ex: scissoring)
• after scan conversion - create the entire

canvas in memory and display only visible
part (ex: panning large static scenes)

• Scissoring
• combining clipping and scan conversion
• simplest, brute force technique
• scan-convert entire primitive and write only

visible pixels
• can be fast in certain circumstances

• if output primitive not >> than clip
rectangle (faster to clip individual pixels
than analytically)

Clipping Points

• for now, assume that clipping against
rectangles.

• easy: x x xmin max≤ ≤
y y ymin max≤ ≤

(x,y)

xmax

ymax

ymin

xmin

Clipping Lines
• lines are clipped to line segments
• can check whether a line needs to be clipped

by looking at its endpoints

Observations

1. If the 2 endpoints of a line are within the
clipping rectangle, then the line is completely
inside (trivially accept) (AB)

2. If 1 endpoint is inside and the other is outside
then MUST compute the pt, of intersection (CD)

3. If both endpoints are outside then the line may
or may not be inside (EF, GH & IJ)

1. Solving Simultaneous Equations (brute force)

• intersect the line with each of the 4 clip edges
(xmin, xmax, ymin, ymax)

• test these intersection pts to see if inside the
clipping rectangle

• can do this 2 ways
1. assuming infinite lines (y=mx+b)

2. deal with line segments - better
• parametric formulation:

x = x0 + t(x1 - x0) t ∈[,]0 1
y = y0 + t(y1 - y0)
for endpoints (x0, y0), (x1, y1)

 consider parametric equations for the lines
(tline) as well as the clipping edge (tedge)

• line: (x0, y0) to (x1, y1)
x = x0 + tline(x1 - x0)
y = y0 + tline(y1 - y0)

• clipping edge: (x2, y2) to (x3, y3)
x = x2 + tedge(x3 - x2)
y = y2 + tedge(y3 - y2)

• if(x,y) exists such that
tline ∈[,]0 1 and
tedg ∈[,]0 1
then (x,y) lies on the intersection
between the line and the clipping edge

• NOTE: will get many pts (x,y) if edge is
a subset of the line (coincident), check
for this.

BUT, both of these approaches are inefficient

Cohen-Sutherland Algorithm

• determines whether intersection
calculations can be avoided by performing
“region checks”.

• assign a 4-bit code to the clipping rectangle
AND the surrounding regions

• code ABRL (Above, Below, Right, Left)

• easy to determine region of an endpoint (x,y)
y > ymax A x > xmax R
y < ymin B x < xmin L

Algorithm:
1. Calculate the code of the 2 line endpoints
2. Check for trivial acceptance (both codes = 0000)
3. Perform bitwise AND of codes
4. Trivially reject if result ≠ 0000.
5. Choose an endpoint outside the clipping rectangle.

Test its code to determine which clip edge was
crossed and find the intersection of the line and that
clip edge (test the edges in a consistent order).

6. Replace endpoint (selected above) with intersection
point

7. Repeat

A 1001 C 0001
B 0101 D 0010

0001 Reject 0000 Intersect

E 1000
F 0010

0000 Intersect

E
1001 1000 1010

0001 0000 0010

0101 0100 0110

F

D
\

C
B

A

Intersection Example

A 0101
B 0010

0000 Intersection
• A is outside, intersection test yields C, replace A by C

C 0100
B 0010

0000 Intersection
• C replaced by D

D 0000
B 0010

0000 Intersection
• B replaced by E

E 0000
D 0000 Accept DE

1001 1000 1010

0001 0000 0010

0101 0100 0110

A

B

C

D
E

• Note: order of computing intersection of line
segments with clipping edges is either a
predetermined consistent pattern, or
dependant on code of endpoints.

• fairly efficient algorithm (widely used)
• pseudocode in text.

3. Midpoint Subdivision Variation
• intersection found by computing successive

midpoints and testing resulting segments.

• test outcode of (00), then (01), (10)
then (02), (21), (12), (20)
then (03), (32), (23), …

• although seems inefficient, not bad since
limited to screen resolution

0

0

1
2

2

3
3

Parametric Line-Clipping (Cyrus-Beck Algorithm)

• makes use of parametric representations
• intersection of line with clipping edge

line: P(t)=P0 + t(P1-P0)
t ∈[,]0 1

• can distinguish region a point lies in by
looking at dot product

• Ni • [P(t1) - PEi] > 0 outside
• Ni • [P(t2) - PEi] = 0 on edge
• Ni • [P(t3) - PEi] < 0 inside

P0

P1

PEi

Ei

Ni

P(t1)
P(t2)P(t3)

• to find the t value that corresponds to the
intersection point P(t2) solve:

Ni • [P(t) - PEi] = 0
Ni • [P0 + t(P1 - P0) - PEi] = 0
Ni • [P0 - PEi] + Ni • [P1 - P0]t = 0
t = (Ni • [P0 - PEi]) / (-Ni • [P1 - P0])

• can do this for each clip edge. (for
rectangle you’ll get 4 values of t)

• can trivially reject those t ∉[,]0 1 , since
outside line P0P1

• but how to handle the rest?

• characterize the intersections as:
PE potentially entering (outside to inside)
PL potentially leaving (inside to outside)

• intersecting segments will be composed of a
PE-PL pair

• idea
• want PE with largest t (tE)
• PL with smallest t (tL)

• intersecting segment in clipping plane is P(t),
t t tE L∈[,] (of course tE & tL ∈[,]0 1

• NOTE, if tE > tL, not inside the clip region
• pseudocode is in the text…

out

out

out

out

in

in

in in

in
out

P0

P0

P1

P1

PE

PLPE

PL PL

PL

PE

(tE)

(tL)

5. Liang-Barsky
Cyrus-Beck and additional tests for rejection

Clipping Circles & Ellipses
Circle

• trivial accept/reject test (quadtree
bound aproach)

a./ test bounding box with clip region

b./ if intersects then check quadrants

c./ if intersects then check octants

d./ compute the intersection analytically

e./ scan convert the resulting arcs (could
 scissor on a pixel by pixel basis).

Ellipses: like circles but only down to
quadrants, then scan convert

Clipping Polygons
• must test intersections of potentially many

edges.
• want result to be a polygon(s) (since may be

filled)

Clip of convex results in
1 polygon Clip of concave polygon

may result in several
polygons

Sutherlan-Hodgman Algorithm
• divide & conquer strategy

• subproblem: clip polygon against 1 clip edge
• at each step, the partially clipped polygon is

clipped against the next edge and so on…

• for each clipping edge
• for each polygon edge

• clip polygon edge to clip edge
• store vertices (new) to new polygon

• 4 possible cases

• be careful of extra edges
• pseudocode in the text…

