
Page 1 of 21

Filling Algorithms

• decide what pixels to fill
• decide what value to fill them (solid/pattern)

1. Primitives: rectangles/polygons
• scan line algorithms (text sections 3.5-3.8)

2. Regions of pixels
• fill algorithms (text section 19.5)

Filling Rectangles

• fill each span (segment of scan-line containing the
rectangle) from xmin to xmax while traveling from ymin

to ymax (reversing the order is trivial of course).

Span: a contiguous sequence of pixels on a scan line

Scan Line
span

rectangle

y/xmin xmax

ymax

Page 2 of 21

Spans exhibit a primitive’s COHERENCE, the degree to
which parts of an environment or its projection exhibit
local similarities.

• Spatial coherence:
primitives do not often change from pixel to pixel
within a span or consecutive span lines (look only for
pixels where change occurs, such as boundaries)

• Span coherence:
primitives do not often change from span to span (ex,
all pixels set to same value for solidly shaded
polygon).

• Scan-line coherence:
not much change between successive scan-lines (ex,
consecutive scan-lines that intersect rectangle are
identical).

• Edge coherence:
edges of polygon intersect successive scan-lines
(continuity of edges, will be useful later).

• Coherence greatly increases efficiency of scan-line
algorithms (can output an entire span or scan-line
rather than pixel by pixel).

Page 3 of 21

• Problem: boundary pixels may be drawn several times
for shared edges. (what colour should a shared edge
be?)

• Partial solution, only draw “left” & “bottom” edges
(skip right & top)

• Problem with this is that the left/bottom vertex still
drawn twice, not so good for unfilled polygons (there
is no perfect solution)

Page 4 of 21

Filling Polygons

• Basic Idea: intersect the polygon with consecutive
scan-lines and check for points of intersection (ie.
Compute and fill the spans)

Page 5 of 21

• Could determine span extrema (outermost pixels of a
span), using midpoint algorithm, but watch out for
extrema outside of polygon (want to fill the interior)

Page 6 of 21

Incremental Algorithm

1. Find the intersection of the scan-line with all edges
of the polygon.

2. Sort the intersections by increasing x.
3. Fill in all pixels between pairs of intersections that

lie interior to the polygon. (Odd-parity rule: parity
initially even, each intersection inverts the parity -
draw when odd only).

3.1 What is the interior pixel for a fractional x
intersection?

3.2 Intersection at integer pixel coordinates?
Leftmost extrema visible (interior), rightmost
extrema exterior (not visible).

inside outside outside inside

Round down Round up

x (flt. Pt.) x (flt. Pt.)

Page 7 of 21

3.3 Intersection at vertices? Problem:

solution, count ymin of edges bu not ymax.

3.4 Horizontal Edges? Bottom edges drawn, top
edges not. Since bottom edges will begin with a
ymin they will be odd parity.

even even
 odd

odd
even odd even

Intersects 2 edges
tf/ counts twice

If count once, still
have problems…

even odd
even odd even

Count once for
ymin

Counted 2x for
ymin of 2 edges

even
ymin

ymax
ymin ymin

odd even

Page 8 of 21

Examples – Figure 3.22

Horizontal Edges – Figure 3.24

Page 9 of 21

Little problem with little (thin) polygons
• The edges lie so close together that the area does not contain a

single pixel

Some pixels not drawn since not interior, left or
bottom… GAPS!

Page 10 of 21

Scan-Line Algorithms

1. Find the intersections of the scan-line with all
edges of the polygon.
• Must be computed in a clever way, or can be

SLOW.
• Brute Force: test each polygon edge with

each scan-line (brutally slow!)
• Use edge coherence (many edges

intersected by scan-line i are also
intersected by scan-line i+1).

• Can compute new x intersection with scan-
line i+1 using old intersection with scan-line i.
x x mi i+ = +1

1 (remember midpt. line
algorithm, but here stepping by 1 in y).

Page 11 of 21

Edge Coherence Algorithm:
(slope > +1 that are left edges)

• Draw a pixel at endpoint (xmin, ymin)
• As y is incremented, x will increment by 1/m where

m=(ymax-ymin)/(xmax-xmin)
• x will have an integer and a fractional part
• As we iterate, the fractional part will overflow and

the integer part will have to be incremented
• When fractional part is zero, draw the pixel at

(x,y) that lies on the line. When fractional part is
nonzero, round up (interior point)

• When fractional part becomes greater than 1, we
increment x and subtract 1 from the fractional
part

(2,1) – (4,6)
xmin = 2 m=5/2 1/m=2/5

y=1 x=2
y=2 x=2+2/5 à 3
y=3 x=2+2/5+2/5 à 3
y=4 x=2+4/5+2/5

=2+6/5
=3+1/5 à 4

y=5 x=3+1/5+2/5 à 4
y=6 x=3+3/5+2/5 à 4

Page 12 of 21

Keeping Track of Edges of Interest to a Scan-Line

Active Edge Table (AET)
• set of edges (with intersection pts.) intersected

by the current scan-line.
• sorted by x intersection values
• fill span of each pair of x intersection values
• updated for each scan-line (assume y+1)

delete ymax < y+1 (ymax = y)
add ymin = y+1
compute new x intersection for edges in AET

Page 13 of 21

Edge Table (ET)
• global table containing all edges sorted by

decreasing y. (usually bucket-sorted: one bucket
per scan-line)

• edges in a bucket sorted by increasing x.

Page 14 of 21

Scan-Line Algorithm

1. Set y to the smallest y coordinate that has an entry
in the ET (ie. Y for first non-empty bucket).

2. Initialize AET to be empty
3. Repeat the following until both AET & ET are empty.

3.1 Move edges from ET to AET if ymin = y, then
sort AET on x (easier since ET presorted).

3.2 Remove edges from the AET if ymax = y, then
sort the AET on x

3.3 Fill in pixels between x pairs in the AET
3.4 Increment y by 1 (next scan line)
3.5 Update x for new y for edges in AET

(also include flag for left or right edge)

Page 15 of 21

Filling Regions of Pixels (text section 19.5)
• good for filling regions or non-self intersecting

polygons (like flood fill, or paint can in Mac)
• region: collection of pixels

• interior defined regions: largest connected region of
pts whose value is the same

• boundary defined regions: largest connected region
of pts whose value are NOT some boundary value

Each algorithm can be divided into four components:
• propagation method (determine next point to be

considered)
• start procedure (initialize algorithm)
• inside procedure (determines if a pixel should be

filled)
• set procedure (changes the colour of a pixel)

Page 16 of 21

 Two Types of Regions

• 4-connected
• pixels connected L, R, U, D

• 8-connected
• pixels connected by L, R, U, D,

 UR, UL, DR, RL

Two definitions of pixel regions
• interior defined

• all pixels inside the region have a given colour and
no boundary pixels have this colour (can also have
“holes” in it of a different colour)

• boundary defined:
• the region is defined by a set of pixels of a

boundary colour and no interior pixels have this
colour (can also have interior “holes” which have
the boundary colour)

Page 17 of 21

NOTE
4 connected region

• interior define – 4 connected flood fill
• boundary defined – 4/8 connected boundary fill

8 connected region
• interior defined – 8 connected flood fill
• boundary define – 4 connected boundary fill

• Filling:
• start with region (interior)
• proceed in 4 directions (8) recrusively until

a) no more with same color (flood fill ≡ interior
defined)

b) not hit boundary (boundary fill ≡ boundary-
defined)

Page 18 of 21

Algorithms
1/ Floodfill4(int x, int y, int old,

 int new){
if(pixel(x,y)==old){

pixel(x,y) = new;
FloodFill4(x, y-1, old, new);
FloodFill4(x, y+1, old, new);
FloodFill4(x-1, y, old, new);
FloodFill4(x+1, y, old, new);
}

}

2/ Boundaryfill4(int x, int y, int
 bound, int new){

if((pixel(x,y)!=bound) &&
 (pixel(x,y)!=new)){

pixel(x,y) = new;
Boundaryfill4(x,y-1, bound, new);
Boundaryfill4(x,y+1, bound, new);
Boundaryfill4(x-1,y, bound, new);
Boundaryfill4(x+1,y, bound, new);
}

}

** highly recursive – stack can become very deep **

Page 19 of 21

Span Filling: Region Coherence

• efficiently fills in spans of pixels

Algorithm:
• push seed pixel on stack
• while stack is not empty

• pop stack to get next seed
• fill in span defined by the seed
• examine row above for spans reachable from

this span and push the addresses of the
rightmost pixels of each onto the stack

• do the same for the row below the current
span

Page 20 of 21

s s

s s

Page 21 of 21

Pattern Filling

• anchoring pattern to primitive
or
• pattern fills window and primitive “lets the

pattern through”

