Exam Review

Responsible for everything from before the midterm (see midterm review topics)

PLUS ...

Polygonal and Hierarchical Models (Sections 7.1, 7.4, 7.5, 7.7)

- Understand what a geometric model and how hierarchies of models are used to build up complex objects.
- What are the advantages of using a hierarchical model
- Understand the examples given of how transformations are applied to hierarchical models

Curves and Surfaces (Section 11.1, 11.2 (up to end of 11.2.2), 11.3 (up to end of page 517, + handouts)

- Understand the parametric form of curves and why it is beneficial
- Understand parametric cubic curves and why we user them
- Understand geometric and parametric continuity
- Understand Hermite curves and how they are specified
- Be able to derive the Hermite basis matrix for a given curve
- Understand blending functions
- Understand Bezier curves and how they are specified
- Understand how to derive the MHB matrix that defined the relation between the Hermite and the Bezier geometry matrix
- Don't need to know b-splines
- Understand the de Casteljau algorithm for evaluating bezier curves
- Understand the concept of parametric surfaces and polygonal meshes

Visible surface determination (Section 15 (intro), 15.2, 15.4, 15.6, 15.10 (up to end of 15.10.1)

- Know the difference between image space and object space algorithms
- Understand the efficiency considerations (briefly)
- Understand the z-buffer algorithm
- Understand scan-line algorithms
- Understand how ray-tracing (ray-casting) can be used as a visible surface algorithm

Illumination and Shading (Section 16.1, 16.2, 16.3)

- Understand the different pieces of an illumination model and how they fit together
- Understand the difference between an illumination model and a shading model
- Understand the different shading models (constant shading and interpolated shading including Gouraud and Pong shading
- Know the advantages and disadvantages of the different shading models
- Understand the different approached to apply surface detail

Ray Tracing (Section 16.12 (up to beginning of section 16.12.1)

 Understand how the process ray tracing works and be able to complete an example