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  Rogers & Adams, "Mathematical Elements for Computer Graphics" 
  Foley & van Dam, "Computer Graphics: Principles and Practices" Ch 11 
_______________________________________________________________________________ 

A Physical Basis for Cubic Splines 

A "spline" is a thin elastic beam, made out of  plastic, wood or metal.  It was used in drawing long smooth curves 
through a series of points, in the design of aircraft, ships and cars.  The beam was positioned by attaching lead 
weights (called "ducks") to the beam at various points. 

 
Euler's equation for a thin elastic beam is: 

M x EI R x( ) ( )=  

  where M(x) =  bending moment 
 E = Young's Modulus 
 I = moment of inertia 
and R(x) = radius of curvature 

 
From elementary calculus:  

� �
3 221 1 '  for '  << 1 (small  deflection)R y y y y� � ��� ��  

Substituting,  we get         y" = M(x) / EI. 

 
We also know from physics that M(x) is linear in x so we can write M(x) = Ax + B.  Thus 

  ′′ = +y Ax B EI( )  
 or  
  y ax bx cx d= + + +3 2  
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That is, we have a cubic in x. This suggests that a cubic curve is a reasonable way to represent a smooth curve; ie 
that cubic polynomials are a reasonable for a mathematical spline.  In general a mathematical spline is a piecewise 
polynomial of degree n, and has continuity of derivatives of order n-1 at the joints between segments (pieces).  Thus 
a cubic should have C(2) continuity at the joints. 

 
We use low degree polynomials both for computational reasons and because high degree polynomials tend to be 
unstable numerically. Since low degree poly's can only "span" a limited number of points, the technique we use is to 
join together, end-to-end fashion, as many curve segments aa are needed.  Thus, continuity conditions at the 
endpoints of individual segments become important, in order to get sufficiently smooth joins. 
 

Parametric form 
A simple example is the 1st quadrant of the unit circle: 

x
y t

=
= ≤ ≤

cos
sin

�

�    for 0 1
 

However parameterizations are not unique. For eg, letting    t = tan(�/2),  we can derive 
 

x t t

y t t t

= − +

= + ≤ ≤

1 1

2 1 0 1

2 2

2

e j e j
e j

/

/     
 

 
a second parametrization for the circle. 
 
If we think of P(t) =(x(t), y)t)) as the  path over time from 0 to 1, P' and P" are the velocity and acceleration.  
Different parameterizations however may give us different values for these.  For  the sine-cosine  parametrization we 
observe:  
 

  P'(�) = (-sin �, cos �)    and  |P'(�)|  =  sqrt(sin2� + cos2�) = 1 everywhere  
 

but for the  tan(�/2) parametrization, we have 
 
  P'(t) = (-4t  / (1 + t2)2, 2 (1 - t2) / (1 + t2)2 )  and |P'(0)| = 2;  |P'(1)| = 1 
 

SO ... what functions should we use as the parametric functions?   
We want functions x(t), y(t), z(t) that are easy to compute, flexible, and give us the shapes we need to cover. 

 - polynomials are a good class 
 - two types often used are the monomials or power basis, and Bezier basis. 
 

The power basis is just {  ui}  , i = 0,1, ... .  We develop the Bezier basis below. 
 

Parametric Cubic (Hermite) Curves 

An algebraic form of the 3D (space) curve is simply:   x = x;     y = f(x);     z = g(x); What are the problems with this 
method? Some of these are solved with the implicit form:      f(x,y,z) = 0.   However the implicit representation also 
has drawbacks:  what are they?
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Let's look at power  i=3, the cubic form, and develop a more intuitive, geometric way of dealing with the coefficients 
of the power basis.  The Parametric form, P(t) = [X(t)  Y(t)   Z(t)] solves  these problems and can be represented: 

 

X t a t b t c t d

Y t a t b t c t d t

Z t a t b t c t d t

x x x x

y y y y

z z z z

( )

( )

( )

= + + +

= + + + ≤ ≤

= + + +

3 2

3 2

3 2

0 1           

           ie  restricted to [0,1]

 

 

Using matrix notation, we write 

X t t t t

a
b
c
d

t t t
x

x

x

( ) = •

L

N

M
M
M
M

O

Q

P
P
P
P

=

=

3 2

3 2

1

1 C

TC

 

or 

P(t) = T C 

The tangent vector is the (parametric) derivative of P(t): 

P’(t)  =  [X’(t)  Y’(t)   Z’(t) ] 

where X'(t)   =  dX(t)/dt 

 

Continuity Definition: Two curves which join at their end/start points have geometric continuity of order 
0, written as G(0) continuity.  If also the directions of the tangent vectors (but not necessarily the 
magnitudes) are equal, we say  the curves have G(1) continuity.  If the magnitudes are also the same they 
have C(1) or parametric continuity.  The tangent vector is the velocity of a point on the curve with respect to 
the parameter t. 
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To determine a, b, c, and d, we convert to geometric form and match end points and slopes: 

   
By inspection of the figure we see that 

 X(0) = P1x 

X(1) = P2x 

X'(0) = R1x 

X'(1) = R2x 

Then, since X(t) = [ t3  t2  t  1] Cx   and X'(t) = [3t2  2t  1  0] Cx, 

we have that X(0)  = P1x = [ 0  0  0  1] Cx 

X(1)  = P2x = [ 1  1  1  1] Cx 

X'(0) = R1x = [ 0  0  1  0] Cx 

X'(1) = R2x = [ 3  2  1  0] Cx 

Combining all four, we get 

P
P
R
R x

x

1

2

1

2

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

L

N

M
M
M
M

O

Q

P
P
P
P

=

L

N

M
M
M
M

O

Q

P
P
P
P
C  

We simply invert the matrix to solve for Cx: 

C

M G

M
G

x

x

h h

h

h
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P

L

N
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=

=
=
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3 3 2 1

0 0 1 0
1 0 0 0

1

2

1

2

 
where   Hermite matrix,  and

 Hermite geometry matrix

 

Thus we have X(t) = T MhGhx  

 Y(t) = T MhGhy or, combining, P(t) = T MhGh. 

 Z(t) = T MhGhz  

 

In other words, we have an expression giving  the curve P(t) in terms 
of a parameter t and a geometry vector that has intuitive appeal. 
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Blending Functions 
Let's gather terms that modify each of the geometric quantities: 

X t

t t t

P
P
R
R

t t P t t P t t R t t R

F F F F

P
P
R
R

h hx

x x x x

( ) =

=

L

N

M
M
M
M

O

Q

P
P
P
P

= − + + − + + − + + −
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L

N

M
M
M
M

O

Q

P
P
P
P

TM G

3 2

1

2

1

2

3 2
1

3 2
2

3 2
1

3 2
2

1 2 3 4

1

2

1

2

1

2 3 1 2 3 2 1e j e j e j e j
 

 

The functions Fi are called Blending Functions because they "blend" the geometric quantities  P1,  P2,  R1 and R2 

to produce the resultant curve.  The Hermite blending functions are plotted in the figure below: 

 

   

 

Observe that at P1 we have F1(0) = 1 and   F2(0) =  F3(0) = F2(0) = 0  so that the curve passes through P1.  A similar 
argument shows it also passes through P2. 
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Bezier Curves 
We can develop these by modifying the Hermite form.  The tangent vectors are defined in terms of intermediate 
points: 

R P P R P P
P P

1 2 1 4 4 33 3
0 1

= − = −
= ′ = ′

b g b g
( ) ( )

 

R1  = 3(P2 - P1)       R4 =  3(P4 - P3)   
 = P'(0)    =  P'(1)

Bezier curve passes through 
(interpolates) first, last points. 

 
We note the Bezier curve passes through (interpolates) the first and last points.  If we now write Gh in terms of the 
Bezier Geometry matrix, Gb, we get 

G M Gh hb b

P
P
R
R

P
P
P
P

=

L

N

M
M
M
M

O

Q

P
P
P
P
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−
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Q

P
P
P
P

L

N

M
M
M
M

O

Q

P
P
P
P

=

1

4

1

4

1

2

3

4

1 0 0 0
0 0 0 1
3 3 0 0

0 0 3 3

 

Now since X(t) = T Mh  Ghx, we get 

                                                                
   so that letting     we get
                                                                ( ) =

                                                                       

X t

X t

h hb b

b h hb

b b

b b

x

x

x

( ) =

=

=

TM M G
M M M

TM G
F G

 

where Fb is the Blending function vector (see plots below).  The general form of a Bezier curve of degree n ( with 
n+1 control vertices) is, writing Bn,i for the ith blending function, 

X t P B t P
n
i

t ti n i
i

n

i
i

i

n
n i

x x
( ) ( ) ( ),= =

F
HG

I
KJ −

= =

−
� �

0 0

1  

where Bn,i is the ith Bernstein polynomial of order n, and 
n
i

n
i n

F
HG

I
KJ =

−
!

! !1b g . 
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We note that the Bernstein functions sum to one and are everywhere  positive (convex hull property1, an interesting 
exercise to prove this!), ie 

B t
n
i

t tn i
i

n
i

i

n
n i

, ( ) ( )
= =

−
� �=

F
HG

I
KJ − =

0 0

1 1 

This means we can think of the curve Q(t) = [X(t)  Y(t)]  as the weighted  average of the control points, weighted by 
the blending functions. 

Here's some more examples: 

 

 

                                                           
1Convex Hull  of a set of points is the polygon formed by putting a rubber band around points. The Convex Hull 
property of the Bspline curve is that the curve is contained within the convex hull of the control points. 
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Joining Bezier Curves 
It's also interesting to see what's required to join Bezier curve segments with various degrees on continuity.  For  C(0), 
we just need the first point of segment two to be the same as the last point of segment one.  Let's see what we need 
for C(1): consider two segments (in blending function form): 

P(t) = [(1-t)3  3t(1-t) 2  3t2(1-t)   t3 ] • [P0   P1   P2   P3 ] T 

and 

Q(t) = [(1-t) 3  3t(1-t) 2  3t2(1-t)   t3 ] • [Q0   Q1   Q2   Q3 ] T 

 

For C(0) we need Q0 = P3.  For C(1) we also need to look at the first derivatives: 

P'(t)  =  [-3(1-t)2   3(1-t) 2 - 6t(1-t)     6t(1-t) - 3t2     3 t2] • [P0   P1   P2   P3 ] T 

 and similarly for Q'(t).  Evaluating at the end of the first segment and at the start of the second: 

P'(1)  =  3(P3 - P2) 

Q'(0)  =  3(Q1 - Q0) 

We get C(1)  continuity if P'(1) = Q'(0), i.e.  if all three  points, P2 , P3 = Q0 ,  and Q1 
 
are co-linear as the following 

diagram illustrates. 

 

 

For curvature continuity (C(2)), we need five colinear points, which doesn't leave much freedom to move vertices for 
a cubic!  This suggests for C(2) we should switch to quintic Bezier (and 6  points per segment). 
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Bezier Blending Functions of degree 2, 3, and 5 
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Degree Raising [optional] 
We sometimes need to raise the accuracy of control of a Bezier curve. One way is to raise the degree of the curve, 
adding an appropriate number of control vertices. See  Chiyokura for details. In outline: 
 
To raise from degree   n   to    n+1 we first set  P(t)  =  t P(t)  +  (1-t) P(t) 
 
Now    P(t)  =  {  P0,  P1,  ...  Pn }   
 
Substituting  and doing some algebra, we can show 
 
 tP(t) =  {   0,  1/(n+1)P0,   2/(n+1)P1,  ...  n/(n+1)Pn-1, Pn}   
and 
 (t-1)P(t) =  {   P0,  n/(n+1)P1,   (n-1)/(n+1)P2,  ...  1/(n+1)Pn-1,  0}   
 
Summing, we get 
 
Q(t) =  {   P0,  (P0 + nP1)/(n+1),   (2P1 + (n-1)P2)/(n+1),  ...   ( nPn-1 + Pn-1)/(n+1),  Pn   }   
 
for the new curve. 
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B-Spline Curves 
 
The B-spline is in a sense the smoothest of the three types considered so far.  It has continuous tangents  and 
curvature, but does not necessarily pass through any of the control points.  It also exhibits the variation diminishing, 
or local control property, i.e. a control point only affects a limited portion of the curve.  The equations are 

X(t) = T Ms Gsx 

Where 

Ms =

− −
−

−

L

N

M
M
M
M

O

Q

P
P
P
P

1
6

1 3 3 1
3 6 3 0
3 0 3 0

1 4 1 0

 

The Blending functions are shown in the sketch below; the "numbering" is quite different from Bezier etc.  

 

Blending functions: 
 - non negative and sum = 1  => convex hull property 
 - can show C(0),  C(1) and C(2) continuous 
 
For a series of control points  P1,  P2,  P3,  . . .  Pn,   a sequence of B-spline segments is used with a different 
geometry matrix between each pair of adjacent points.  For Pi  to Pi+1 we have 

G

P
P

P
P

i ns

i

i

i

i

i
=

L

N

M
M
M
M

O

Q

P
P
P
P

≤ ≤ −

−

+

−

1

1

2

2 2      for    
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Example:  A uniform cubic BSpline with 9 points  (m=8).  We show what happens when a vertex is moved: 

m+1 points 9 points P0 P1 P2  P3  P4  P5  P6 P7 P8 

m-2 segments 6 segments Q3 Q4 Q5 Q6 Q7 Q8 

m-1 knots 7 knots t3  t4  t5  t6  t7 t8  t9
 

 

 

For the uniform BSpline 
•   each Qi could be defined on its own 0 ≤  ti < 1 domain 
• adjust parameter   t so that  t = ti + k so that parametric domains are sequential  and  
  Qi is defined on   ti  ≤  t < ti+1 
• knots defined at equal intervals of t;  and we set  t3 = 0 
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Uniform B Spline: multiple control points: 
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NonUniform (NonRational) BSpline 
Basic difference for non-uniform B-Spline: non uniform spacing between knot values For the  NonRational Bspline, 
the curve is an ordinary simple polynomial (not a quotient of two poly's) 
• advantage over uniform: can reduce continuity at a join from C(2) to C(1) to C(0) to 0 
• if C(0), curve interpolates control vertices, but not forced to be a straight line  on either side, as it is for uniform 

Bsplines 
• Basic recurrence relation for BSplines: 
 

N t t t t

N t
t t

t t
N t

t t
t t

N t

i i i

i n
i

i n i
i n

i n

i n i
i n

,

, , ,

( )

( )
( )

( )
( )

( )

1 1

1
1

1 1
1 1

1
0

= ≤ <
=

=
−

−
+

−
−

+

+ −
−

+

+ − +
+ −

  for  
  otherwise

b g b g
 

NonUniform Rational B-Splines 
 x(t) = X(t)/W(t) 
• cubic polynomial  with control points defined in homogenous coordinates, or 
• curve is Q(t) = [X(t), Y(t), Z(t), W(t) ]  in homogenous space and we must project it back into ordinary 3 space 

to plot. 
These are useful because: 
• invariant under rotation, scale, translate, perspective  

• (Non-rational is invariant  only under R, S, T) 
• thus perspective only needs be applied to control points!! 

• can define quadrics exactly (Conic sections) 
• very important for CAD 
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Comparison of Hermite, Bezier and  B-spline curves 

Hermite: 
• passes through end points 
• continuous tangents 
• good for approximating existing points 
• C

(1)
 continuity 

• reduce exactly to conic section 
• poorly approximate asymptotic curves 
• may have spurious oscillations unless carefully controlled 
• cubic spline locally influenced by each data point 
• 3rd derivative only piecewise continuous, thus discontinuities can induce unwanted inflection points.  An 

oscillating curve may be  C(2) continuos, but is not "fair". 
• intuitive effect of varying tangent vector direction and magnitude 
• lack of local control (change any point affects curve everywhere) (matrix inversion requires large effort for 

many points)  

Bezier: 
• passes through end points 
• continuous tangents 
• more intuitive for interactive adjustment 
• convex hull property 
• C(1) continuity 

B-spline:  
• need not pass through control points 
• convex hull property 
• variation diminishing (local control) 
• C(2) continuity 
 
A more advanced representation extends B-splines to allow exact representation of conics along with other 
advantages. It uses Non-uniform B-splines for more flexibility, and uses a rational form, thus the name: Non Uniform 
Rational B-Splines, or NURBS. An excellent introduction is on the Apple developers website:  

http://devworld.apple.com/dev/techsupport/develop/issue25/schneider.html 

Recent Articles 
Smith, Susan. 1996. "The Challenges of Complex Surfaces", CGW Dec '96, pp27-35 

A major problem is matching boundaries between surfaces.  To avoid this, the European approach is to try to model 
a whole fender, for eg, with a single 21st order equation.  The Japanese try to use very large numbers of very small 
1st order (4 point) patches.  Continuity of joins is key; they measure curvature continuity as the ability to pass bands 
o flight across the surface without disruption to the light bands. 
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Vendors 
Top 5 in MCAD (1997):   

• PTC (Pro/Engineer);  uses CDRS developed originally by E&S 
• IBM/Dassault Systemes (CATIA),  
• Computer Vision (CADDS 5),  
• SDRC (IDEAS)  
• EDS (Unigraphics); UGS claims to deal with up to order 24 
 

Others include  Matra/Datavision, which uses the code from Cisigraph that uses uniform polynomials to order 21.  


