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A Physical Basis for Cubic Splines

A "spline" isathin elastic beam, made out of plastic, wood or metal. It was used in drawing long smooth curves
through a series of points, in the design of aircraft, shipsand cars. The beam was positioned by attaching lead
weights (called "ducks") to the beam at various points.

Euler's equation for athin elastic beam is:
M(x) = El /R(x)

where M(X) = bending moment
E = Young's Modulus
| = moment of inertia
and R(X) = radius of curvature

From elementary calculus:

YR=y"/(1+y?)"* =y fory' <<1(small deflection)
Substituting, we get y' = M(x) / El.

We aso know from physics that M(x) islinear in x so we can write M(x) = Ax+ B. Thus

y" = (Ax +B)/El
or
y =ax® +bx? +cx +d
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That is, we have acubic in x. This suggests that a cubic curve is a reasonable way to represent a smooth curve; ie
that cubic polynomials are a reasonable for a mathematical spline. In general amathematical splineis a piecewise
polynomial of degree n, and has continuity of derivatives of order n-1 at the joints between segments (pieces). Thus
acubic should have C(2) continuity at the joints.

We use low degree polynomials both for computational reasons and because high degree polynomials tend to be
unstable numerically. Since low degree poly's can only "span" alimited number of points, the technique we useisto
join together, end-to-end fashion, as many curve segments aa are needed. Thus, continuity conditions at the
endpoints of individual segments become important, in order to get sufficiently smooth joins.

Parametric form

A simple example is the 1st quadrant of the unit circle:
X = cos6

y=sinf forO0<st<1
However parameterizations are not unique. For eg, letting t = tan(6/2), we can derive

x=(1-t2)/ (1+1?)
y=2t/(1+t*) Ost<1
a second parametrization for the circle.
If we think of P(t) =(x(t), y)t)) asthe path over timefrom 0to 1, P'and P"' are the velocity and accel eration.

Different parameterizations however may give us different values for these. For the sine-cosine parametrization we
observe:

P'(6) = (-sinB,cos 6) and |[P'(0)| = sort(s N2 + 00526) = 1 everywhere
but for the tan(6/2) parametrization, we have
P(t)= (-4t /(1+1D2,2(1-t9)/(1+t9)2) and P(0)|=2; P(1)|=1
SO ... what functions should we use as the parametric functions?
We want functions x(t), y(t), z(t) that are easy to compute, flexible, and give us the shapes we need to cover.
- polynomials are agood class

- two types often used are the monomials or power basis, and Bezier basis.

The power basisisjust { ui} , i =01, .... Wedevelop the Bezier basis below.

Parametric Cubic (Hermite) Curves

An agebraic form of the 3D (space) curveissimply: x=x; y=1f(X); z= g(x); What are the problemswith this
method? Some of these are solved with theimplicit form:  f(x,y,2) = 0. However the implicit representation also
has drawbacks. what are they?
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Let'slook at power i=3, the cubic form, and develop a more intuitive, geometric way of dealing with the coefficients
of the power basis. The Parametric form, P(t) = [X(t) Y(t) Z(t)] solves these problems and can be represented:

X(t) =a,t® +b,t? +c t +d,
Y(t) =a,t® +bt? +ct +d, 0stsl
Z(t) = a,t® +b,t? +c,t +d, ie t restricted to [0,1]

Using matrix notation, we write

or
PH)=TC
The tangent vector isthe (parametric) derivative of P(t):
PO = X@O YO Z20]
where X'(t) = dX(t)/dt

Continuity Definition: Two curveswhich join at their end/start points have geometric continuity of order
0, written as G continuity. |f also the directions of the tangent vectors (but not necessarily the
magnitudes) are equal, we say the curves have G® continuity. If the magnitudes are also the same they
have C® or parametric continuity. The tangent vector isthe velocity of a point on the curve with respect to
the parameter t.
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Curves

To determine a, b, ¢, and d, we convert to geometric form and match end points and slopes:

By inspection of the figure we see that

X(O) = Plx

X(1) = Py
Then, since X@)=[t 1t 1C and
we have that X(@0) =Py =[00 0 1] C,

X(1) =Px=[1111]C

X(0) = Rux

X'(1) = Ry
X'(®)=[3t 2t 1 0] C,

X'(0)=Ry=[0 0 1 0] C,
X(1)=Rx=[3210]C

Combining all four, we get

R 0 001
R, 1111
= Cx
R 0010
R], 3210
We simply invert the matrix to solve for C,:
2 2 1 1||R
-3 3 2 1R
C, =

X
=M Gy,

Hermite matrix, and
Hermite geometry matrix

where M,
G,

Thus we have X@®) =T MGy

Y(t) =T MGy or, combining, P(t) = T MGy,

Z(t) =T MGy,

In other words, we have an expression giving the curve P(t) in terms
of a parameter t and a geometry vector that has intuitive appeal.
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Blending Functions
Let's gather terms that modify each of the geometric quantities:

X(t)=TM Gy,
R
—14+3 2 PZ
-[t 2t 1]R1
Ry
(-2t i, {20 e, o 2 R, A e
R
:[Fl F2 F3 F4]2j
RZ

The functions F; are called Blending Functions because they "blend" the geometric quantities Pq, P>, Ry and Ry
to produce the resultant curve. The Hermite blending functions are plotted in the figure below:

Herrmite Blending Functions

My

Observe that at P, we have F1(0) = 1and F,(0) = F3(0) = F»(0) = 0 so that the curve passesthrough P,. A similar
argument shows it also passes through P,.
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Bezier Curves

We can develop these by modifying the Hermite form. The tangent vectors are defined in terms of intermediate
points:

R =3FR-R) R, =3P, -R)

= P'(0) =P
F
1 R1 =3(P2-P1) R4 = 3(P4 - P3)
Fq = P'(0) = P(1)
P2 Bezier curve passes through
k Fa (interpolates) first, last points.
Fy | e
Eezier Curwve 3

We note the Bezier curve passes through (interpolates) the first and last points. |If we now write Gy, in terms of the
Bezier Geometry matrix, Gy, we get

R 1 0 0 0O|R
P, 0 0 0 1|R,
Gh= =l =M Gy
R 33 0 0|R
R, 0 0 -3 3|R,

Now since X(t) = T My, Gy, we get
X({t)=TM M men
so that letting M, =M M, weget
X({t)=TM G,
=FR,G,

where F,, is the Blending function vector (see plots below). The general form of a Bezier curve of degree n (with
n+1 control vertices) is, writing By,; for the ith plendi ng function,

X0=Y R B, 0= Pix(?]ti(l—t)"‘i
i=0 i=0

n\

|J=il(n—1)!'

where B, isthe ith Berngtein polynomial of order n, and (
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We note that the Bernstein functions sum to one and are everywhere positive (convex hull property®, an interesting
exerciseto provethis!), ie

iBn,i ®) =i{hjt‘(1—t)”“ =1
i=0 i=0 !

This means we can think of the curve Q(t) = [X(t) Y(t)] astheweighted average of the control points, weighted by
the blending functions.

Here's some more examples:

A
AN
S

Convex Hull of a set of points is the polygon formed by putting a rubber band around points. The Convex Hull
property of the Bspline curve is that the curve is contained within the convex hull of the control points.
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Joining Bezier Curves

It's also interesting to see what's required to join Bezier curve segments with various degrees on continuity. For C©,
we just need the first point of segment two to be the same as the last point of segment one. Let's see what we need
for C\: consider two segments (in blending function form):

P(t) = [(1-1)® 3t(1-t)% 3t3(1-t) t3]«[Py P, P, P5]T
and

QM) =[(1-t)° 3t(1-t? 3(L-t) t°]1+[Q Q Q Qs]'

For C©we need Q, = P;. For C¥ we also need to look at the first derivatives:

P(t) = [-3(1-t)* 3(1-t)%-6t(1-t) 6t(1-t)-3t2 3t [Py P, P, Ps]T

and similarly for Q'(t). Evaluating at the end of the first segment and at the start of the second:
P'(1) = 3(Ps-Py)
Q(0) = 3(Q1- Qo)

We get C® continuity if P'(1) = Q'(0), i.e. if al three points, P,, P; = Q,, and Q; are co-linear asthe following
diagramillustrates.

O =F3

s
//

For curvature continuity (C*), we need five colinear points, which doesn't leave much freedom to move vertices for
acubic! This suggests for C® we should switch to quintic Bezier (and 6 points per segment).
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1 1
Bo,z B2,2 B 0,3 83,3
0.75 \ / 0.75
0.5 \ / 0.5
B Bis B2s
1’2/ \
0.25 0.25 / \
0 0_‘ o e

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Bezier Blending Degree 5

1
0.75 -
0.5
0.25
N
0
0 025 05 0.75 1

Bezier Blending Functions of degree 2, 3, and 5

ENSC489 11/14/00



ENSC 489 Curves 10

' gg o =

a

Bezier Blending functions
for degree 9

Degree Raising [optional]
We sometimes need to raise the accuracy of control of a Bezier curve. One way is to raise the degree of the curve,
adding an appropriate number of control vertices. See Chiyokurafor details. In outline:
Toraisefromdegree n to n+lwefirstsat P(t) = tP(t) + (1-t) P(t)
Now P(t) ={ PO, P1, ... Pn}
Substituting and doing some algebra, we can show
tP(t)= { O, Y(n+1)PO, 2/(n+1)P1, ... n/(n+1)Pn-1, Pn}
and
(t-1)P) = { PO, n/(n+1)P1, (n-1)/(n+1)P2, ... Y(n+1)Pn-1, O}
Summing, we get

Q1) ={ PO, (PO+nPL/(n+1), (2P1+ (n-1)P2)/(n+1), ... (nPn-1+Pn-1)/(n+1), Pn }

for the new curve.

ENSC489 11/14/00

10



ENSC 489

B-Spline Curves

The B-spline isin a sense the smoothest of the three types considered so far. It has continuous tangents and

Curves

curvature, but does not necessarily pass through any of the control points. It also exhibits the variation diminishing,
or local control property, i.e. acontrol point only affects alimited portion of the curve. The equations are

X(@®) =T MGy
Where
-1 3 31
3 6 3 O
M. =
s %—3 0 3 0
1 4 1 O

The Blending functions are shown in the sketch below; the "numbering" is quite different from Bezier etc.

ESpline Blending Funclions

Blending functions:

- non negative and sum =1 => convex hull property

- can show C©, c® and C? continuous

For a series of control points Py, P, Ps, ... P, asequence of B-spline segmentsis used with a different
geometry matrix between each pair of adjacent points. For P, to P..; we have

P
P
Gs =
P

R-2

ENSC489
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Example: A uniform cubic BSpline with 9 points (m=8). We show what happens when a vertex is moved:

Uniform Cubic BSpline

—d

m+1 points 9 points PoPiP, Ps Py Ps PsP7Pg
m-2 segments 6 segments Q3 Q4 Qs Qs Q7 Qs
m-1 knots 7 knots 3ty t5 t5 t7 15 fo

For the uniform BSpline
each Qi could be defined onitsown 0 < t; <1 domain

adjust parameter tsothat t=t; + k so that parametric domains are sequential  and
Qiisdefinedon t; < t<tj;q
knots defined at equal intervalsof t; and weset t;=0

ENSC489
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Uniform B Spline: multiple control points:

Fi
; P P,
/(
s
-
I
E!4 s
£ D3 \\h—" /j
. ;'J
! A
P1 P3
Fi
Paq
]
z D4
PI-4
Py P2 P
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NonUniform (NonRational) BSpline

Basic difference for non-uniform B-Spline: non uniform spacing between knot values For the NonRational Bspline,

the curve is an ordinary simple polynomial (not a quotient of two poly's)

®  advantage over uniform: can reduce continuity at ajoin from C® to C® to C? to 0

« if CO, curveinterpolates control vertices, but not forced to be astraight line on either side, asit is for uniform
Bsplines

» Basicrecurrence relation for BSplines:

Ni,(t)=1for t; st <ty
=0 otherwise

(t-t) (tin—t)

Ni’n(t) - (ti+n—l -t ) Ni,n—l(t) * (ti+n—1 _ti+1)

Ni+Ln—1(t)

NonUniform Rational B-Splines
x(t) = X(O)/W(t)
e cubic polynomia with control points defined in homogenous coordinates, or
e curveisQ(t) = [X(t), Y(t), Z(t), W(t) ] in homogenous space and we must project it back into ordinary 3 space
to plot.
These are useful because:
e invariant under rotation, scale, trandate, perspective
e (Non-rationa isinvariant only under R, S, T)
»  thus perspective only needs be applied to control points!!
»  can define quadrics exactly (Conic sections)
e very important for CAD

Quadratics gener‘ated
as rational Bezier curves
of degree 2

hyperbala

- parabola
circle

ellipse

14
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Comparison of Hermite, Bezier and B-spline curves

Hermite:

e passesthrough end points

e continuous tangents

» good for approximating existing points

. C(l) continuity

*  reduce exactly to conic section

e poorly approximate asymptotic curves

* may have spurious oscillations unless carefully controlled

e cubic splinelocally influenced by each data point

»  3rd derivative only piecewise continuous, thus discontinuities can induce unwanted inflection points. An
oscillating curve may be C*? continuos, but is not "fair".

* intuitive effect of varying tangent vector direction and magnitude

» lack of local control (change any point affects curve everywhere) (matrix inversion requires large effort for
many points)

Bezier:

e passesthrough end points

e continuous tangents

e moreintuitive for interactive adjustment
e convex hull property

«  CY continuity

B-spline:

*  need not pass through control points
e convex hull property

e variation diminishing (local control)
«  C@ continuity

A more advanced representation extends B-splines to allow exact representation of conics aong with other

advantages. It uses Non-uniform B-splines for more flexibility, and uses arational form, thus the name: Non Uniform

Rational B-Splines, or NURBS. An excellent introduction is on the Apple devel opers website:
http://devworld.apple.com/dev/techsupport/devel op/issue25/schnei der.html

Recent Articles
Smith, Susan. 1996. "The Challenges of Complex Surfaces', CGW Dec '96, pp27-35

A mgjor problem is matching boundaries between surfaces. To avoid this, the European approach is to try to model
awhole fender, for eg, with asingle 21st order equation. The Japanese try to use very large numbers of very small
1st order (4 point) patches. Continuity of joinsis key; they measure curvature continuity as the ability to pass bands
o flight across the surface without disruption to the light bands.

15
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Vendors

Top 5in MCAD (1997):

e PTC (Pro/Engineer); uses CDRS developed originally by E& S
* |IBM/Dassault Systemes (CATIA),

e Computer Vision (CADDS5),

+ SDRC(IDEAYS)
* EDS (Unigraphics); UGS claimsto deal with up to order 24

Othersinclude Matra/Datavision, which uses the code from Cisigraph that uses uniform polynomials to order 21.
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