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Curves

A line segment (or polyline, several connected line
segments) can be used to approximate a curve.

However, when the curve to be approximated is
smoother, it may take a large number of points to
achieve a reasonable degree of accuracy and
interactive manipulation of these points is tedious.

To achieve a more compact and manipulable
representation of piecewise smooth curves, the linear
functions are replaced by higher-order functions
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Two ways to view a curve:
A. a very thin thread “frozen” in space
B. the path of a particle as it moves along the curve

A. Explicit Form
• Typically, in mathematics, a curve is presented

as a graph of a function  Y = f(x)
• As x is varied, y=f(x) is computed by the

function f and the pair of coordinates (x,y)
sweeps out the curve

Problems with explicit form:
1. A function insists that there is one (and only

one) value of y for each x and many curves to not
fit this (e.g. circle) ◊

2. An explicit curve cannot have infinite slopes ◊
3. Any transformation such as rotation of shear

may cause an explicit curve to violate the two
points above.

Implicit Form
• f(x,y) = 0
• there may be more solutions than what we want
• need some way to specify parts of a curve
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B. Parametric Form
• movement of a point through time
• called “parametric” because a parameter

(frequently called t and interpreted as time) is
used to distinguish points on the curve

• path fixed by two functions x(t) and y(t)
• as t varies, point (x(t), y(t)) sweep out the curve
• the curve is all points “visited” by the particle as

t varies over some interval (say 0 – 1)

Example #1: line from (x1, y1) to (x2, y2)
x(t) = x1 + t(x2-x1)
y(t) = y1 + t(y2-y1)

when t=0  (x1, y1)
t=1  (x2, y2)

Example #2:circle x(t) = sin(t)    y(t) = cos(t) ◊

• typically we deal with polynomial or rational
functions (not trig)

• circle
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• the motion of these two functions is different even
if the path is the same

Consider the parametric curve:

x(t) = 6t – 9t2 + 4t3

y(t) = 4t3 – 3t2

A convenient notation is:

These equations are the same.  We simply save on
notation by writing the “basis functions” only once.
(here the basis functions are 1, t, t2, and t3)

Advantages of using parametric equations:
• usually have more degrees of freedom to control

the curve
• parametric curves are not constrained to be

single-valued along any line
• the slope of a parametric curve segment may be

defined vertically
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Parametric Derivatives
• the slope of a parametric curve is computed by

finding the derivative vector (x’(t), y’(t)) at any point
t.  This vector determines the speed at which the
point traces out the curve as t changes.

Example: ◊
• The parameter t moves the point (x(t), y(t)) along

the path of the curve.
• The point's speed varies as t varies. The speed is

higher at the ends of the curve.
• The derivative vector changes in length, reflecting

the variation in the speed of the point.
• In the demonstration, the curve crosses itself, which

can easily happen with parametric curves.

The derivative of our example curve would be:

The derivative function is itself a parametric curve of
degree one less that the original curve.

The derivative curve is called the “hodograph” ◊
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Parametric Cubic Curves

• curves are approximated by piecewise polynomial
curves

• each curve segment is given by three functions, x, y,
z which are cubic polynomials in the parameter t

• the x, y, and z coordinates are represented by a 3rd-
order (i.e. cubic) polynomial of some parameter t

• p(t) = (x(t), y(t), z(t))
• cubic polynomials are used because lower-degree

polynomials give too little flexibility

algebraic form
x(t) = axt3 + bxt2 + cxt + dx

y(t) = ayt3 + byt2 + cyt + dy

z(t) = azt3 + bzt2 + czt + dz

we restrict t to the [0,1] interval

T = [t3 t2 t 1] T and coefficient matrix:  C =

Q(t) = [x(t) y(t) z(t)]T = C • T
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Plotting parametric curves
• usually the independent variable is plotted on the

x-axis and the dependent variable on the y-axis
• for parametric curves, the dependent variable t

is not plotted at all
• therefore, it isn’t possible to determine the

tangent vector just by looking at the plot
• two curves with the same plot may have

different tangent vectors
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Continuity
• for explicit functions, describes when a curve

does not break or tear.  If it meets these
conditions, it is described as C0.

• C0 is defined by the popular description “a curve
is continuous if it can be drawn without lifting
the pencil from the paper.

• If the derivative of the curve is also continuous,
then the curve is first-order differentiable and
is said to be C1 continuous.

• Practically, this means that a C1 continuous curve
will not kink.

• Higher degrees of continuity imply a smoother
curve. ◊

• Unfortunately, continuity does not always result in
the expected smoothness when viewed
parametrically.  The coordinate functions (such as
x(t), y(t) and z(t)) may be first-order differentiable
and still kink.

• All that continuity guarantees for parametric curves
is that the motion of the particle is smooth, there
are no sudden jumps in velocity.  It does not say that
the path of the particle is smooth
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• Geometric continuity
• is a notation that immediately tells the designer

whether or not the curve is smooth
• defined in terms of the directions of tangent

vectors only
• G0:  endpoints meet
• G1:  direction of tangent vectors agree

• Parametric continuity (C)
• Defined in terms of direction and magnitude of

tangent vectors
• C0:  endpoints meet
• C1:  tangent vectors (velocity) are equal
• C2:  derivative of tangents (acceleration) are equal

Examples:
1. A particle travels with C1 and G1 continuity

• a car makes a smooth turn on a road
2. A particle travels with C1 but not G1 continuity

• a car slows to a stop sign, turns its wheels, then
speeds up again in a different direction

3. A particle travels with G1 but not C1 continuity
• a baton is passed from one runner to a faster

runner who stay in the same lane on the track
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• If a curve is C0, it is G0 continuous, no gaps in curve
• G1 continuity, the directions but not necessarily the

magnitudes of the tangent vectors are the same
• C1 continuity, the tangent vectors (directions and

magnitudes) are the same
• Usually C1 implies G1 but the converse is generally not

true
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Constraints on a curve

A curve segment is defined by constraints on
endpoints, tangent vectors and continuity between
segments.  Each cubic polynomial has 4 coefficients so
4 constraints are needed.

Three major types of curves:
• Hermite:  defined by 2 endpoints and 2 endpoint

tangents
• Bezier: defined by 2 endpoints and 2 other

points which control endpoint tangents
• B-spline (uniform, non-rational): defined by a

series of control points

Each curve is defined in the same general way:

Consider the coefficient matrix C as the product of a
geometry matrix G and a basis matrix M.
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The curve is basically a weighted sum of the elements
of the geometry matrix. The weights are each cubic
polynomials of t and are called “blending functions”.
The blending function B are given by B = M • T

Hermite Curves

We impose the following constraints through the
geometry matrix:

GH = [P1 P4 R1 R4]

Which indicates that the four columns (constraints)
will be specified by two endpoints (P1 and P4) and two
tangent vectors (R1 and R4).

GHx = [P1x P4x R1x R4x]
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Blending functions for a Hermite curve

Q(t) = GH ⋅ MH ⋅ T (and combining MH and T into the Blending
function)

= GH B(t)
= (2t3 – 3t +1)P1 + (-2t3 +3t2)P4 + (t3 –2t2 +t)R1 + (t3-t2)R4
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Bezier curves

Mathematical properties of the Bezier curve

Consider the parabola that passes through (0,1) and
(1,0) and is tangent to the x and y axes at these points.

f(t) = at2 + bt + c

where a, b and c are vector coefficients.  f(t) is a
vector function with two components, f(t) = (x(t), y(t)).

The above parabola can we written as:

And can be re-written as:

Why?









+







−
+








=

0

1

0

2

1

1
)( 2 tttf

22

1

0
)1(2

0

0
)1(

0

1
)( tttttf 








+−








+−








=



Page 16 of 18
18

Control points ( (0,1) (0,0) (1,0) which together form
the control polygon.

Bezier Curve
• Specify the tangent vectors for the endpoints

indirectly with two points that are not on the curve.
• The tangent vectors are determined by the vectors

P1P2 and P3P4, which are related to R1 and R4 in the
following way:

R1 = Q’(0) = 3(P2 – P1)
R4 = Q’(1) = 3(P4 – P3)

The Bezier geometry matrix GB is:

GB = [P1 P2 P3 P4]

Then, the matrix MHB that defines the relation
GH = GB ⋅MHB between the Hermite geometry matrix and
the Bezier geometry matrix is just:
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The curve is then defined by the following equation:

Q(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

• Curves will join with G1 continuity if (P3 - P4) = k(P4 -
P5), k > 0. (i.e. the three points must be distinct and
collinear)

• In the more restrictive case of k=1, there is C1

continuity in addition to G1 continuity.
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Characteristics of the Bezier Curve  ◊
• Endpoint interpolation

• f(0) = b0 and f(n) = b(n)
• Tangent conditions

• Bezier curve is tangent to the first and last segments
of the control polygon at the first and last control
points

• f'(0) = (b1-b0)n and f’(1) = (bn-bn-1)n where n is a
constant

• convex hull
• the curve is contained in the convex hull of its control

points for 0<=t<=1
• the convex hull of a control polygon is the minimal

convex enclosure of the control polygon
• affine invariance

• any linear transformation (such as rotation or scaling)
or translation of the control points defines a new curve
that is just the transformation of translation of the
original curve

• linear precision
• if all the control points form a straight line, the curve

also forms a straight line

OpenGL uses a Bezier basis for its curves and it
provides function calls to efficiently evaluate the curve
for drawing.


