- 1. Introduction and History
 - Possibly one or two short questions on history
- 2. Hardware

•

- Vector vs raster displays
- Understand how each work
 - Possible definition/explanation type of question
 - Display controller
 - Refersh buffer
 - Video controller
 - Resolution
 - Depth
 - Types of output devices (display and hardcopy) and how they work (e.g. crt, lcd, printers, plotters)
 - Dot size
 - Addressability
 - Fluorescence
 - Phosphorescence
 - Persistence
 - Refresh rate
 - Flisker
 - Critical fusion frequency
 - Horizonal scan rate
 - Bandwith
 - Shadow mask
 - Look-up table
 - Interlaced vs. non-interlaced
 - Sprites
 - Video mixing
 - RGB
 - Momoshrome
 - Ntsc
 - Pal
- 3. Interaction Techniques

•

•

- Device, task, and dialog considerations
- Hardware characteristics understand and compare devices
 - Absolute/relative
 - Direct/indirect
 - Discrete/continuous
- Location devices and keyboards
 - Basic interaction tasks
 - Selection
 - Text interaction
 - Quantity
 - 3D hardware devices
 - position, selection and rotation
- composite interaction tasks
 - user interface styles
 - WYSISYG
 - Direct manipulation
 - Iconic
 - Menu selection
 - Command
 - Natural language
 - Question and answer

- 4. Graphics Software
 - What is openGL, GLUT, GLUI and what do they do
 - Terminology/definitions
 - Rendering
 - Models
 - Geometric primitives
 - Bitplane
 - Framebuffer
 - single and double buffering
 - event-driven
- 5. Algorithms for 2D primitives– understand each algorithm and be able to discuss the advantages/disadvantages
 - Scan converting lines
 - Brute-force algorithm
 - Incremental algorithm
 - Midpoint line algorithm (Bresenham)
 - Issues with each algorithm
 - Scan converting circles
 - Brute force (equation of a circle)
 - Use $\cos \theta$ and $\sin \theta$
 - Symmetry
 - Midpoint circle algorithm (Bresenham)
 - Second order differences
 - Scan converting ellipses
 - Equation of ellipse
 - DaSilva's algorithm
 - Filling algorithms
 - Coherence (spatial, span, scan-line, edge)
 - Filling rectangles
 - Problem of boundary pixels
 - Incremental Algorithm
 - Verticies and horizontal edges
 - slivers
 - Scan-line algorithm
 - Brute-force
 - Edge-coherence algorithm
 - Active edge table
 - Filling regions of pixels
 - Interior and boundary defined regions
 - Flood fill
 - Boundary fill
 - Span filling
 - Pattern filling
- 6. Clipping understand the different techniques, be able to compare them and be able to do an example
 - Scissoring
 - Clipping against rectangles
 - Clipping lines
 - Looking at endpoints
 - Solving simultaneous equatios (brute force)
 - Cohen-sutherland algorithm
 - Midpoint subdivision variation
 - Cyrus-Beck Algorithm
 - Clipping circles & ellipses
 - Subdividing

- Clipping polygons
 - Sutherland-Hodgman Algorithm
- 7. Antialiasing
 - What is aliasing
 - Antialiasing techniques how to do each technique and advantages/disadvantages of each
 - Increase resolution
 - Prefiltering
 - Unweighted area sampling
 - supersampling
 - Postfiltering

8. 2D Transformations

•

- know the transformation matrices and be able to apply them in an example
 - translations
 - scaling
 - rotation
 - shearing
 - symmetries
- Understand homogeneous coordinates and why they are used
- Understand the general transformation matrix and be able to compose one
- Understand what affine transformations are
- Understand what Rigid body transformations are
- Understand how to compose transformations and be able to do this in an example
- Understand window to viewport transformations
- 9. 3D Transformations
 - know the transformation matrices and be able to apply them in an example
 - translations
 - scaling
 - rotation
 - shearing
 - reflections
 - understand how to transform an arbitrary plane
 - know how to transform coordinate systems and be able to do an example
- 10. Viewing in 3D understand each type of projection and be able to complete an example of each (e.g. be able to compute the 2D projection)
 - parallel projections
 - orthographic
 - oblique
 - perspective projections
 - one vanishing point
 - two vanishing points
 - three vanishing points