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Curves

Representations (Explicit, Implicit, Parametric)

Cubic polynomial form
Interpolating curves

Hermite Curves
Bezier Curves

Nov 24, 2003 CMPT-361 : Hamid Younesy 2

Motivation

Problems with series of points used to model a curve
large amounts of co-ordinate and connectivity information

difficult to exactly design smoothly varying shapes
piecewise linear - Does not accurately model a smooth line

it’s tedious
expensive to manipulate curve because all points must be 
repositioned

Need a compact and easily manipulated high-level 
representation of smoothly varying curves and surfaces
Must be internally convertible to line segment or polygon 
approximation for polygon-scan conversion rendering
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Goals

How do we specify a surface?
Explicit, implicit, parametric

How do we approximate a surface?
Interpolation (use only points)
Hermite (use points and tangents)
Bezier (use points, and more points for tangents)
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Explicit Representation

Curve in 2D: y = f(x)
Curve in 3D: y = f(x), z = g(x)
Surface in 3D: z = f(x,y)
Problems:

How about a vertical line x = c as y = f(x)?
Circle y = ±(r2 – x2)1/2 two or zero values for x

Too dependent on coordinate system
Rarely used in computer graphics
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Implicit Representation

Curve in 2D: f(x,y) = 0
Line: ax + by + c = 0
Circle: x2 + y2 – r2 = 0

Surface in 3d: f(x,y,z) = 0
Plane: ax + by + cz + d = 0
Sphere: x2 + y2 + z2 – r2 = 0

f(x,y,z) can describe 3D object:
Inside: f(x,y,z) < 0
Surface: f(x,y,z) = 0
Outside: f(x,y,z) > 0
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Algebraic Surfaces

Special case of implicit representation
f(x,y,z) is polynomial in x, y, z
Quadrics: degree of polynomial <= 2
Render more efficiently than arbitrary surfaces
Implicit form often used in computer graphics
How do we represent curves implicitly?
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Implicit and Explicit Representations

Weaknesses:
may have too many or too few solutions
affine transformations can be difficult
vertical tangents (infinite slope) present problems
difficult to join separate curves together smoothly

Strengths:
good for point on curve tests
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Parametric Form 

Curves: use single parameter u (e.g. time)
P(u) = (x(u), y(u), z(u))
x = x(u), y = y(u), z = z(u)
example: line:

P(u) = (1-u).P0 + u.P1
x = (1-u).x0 + u.x1
y = (1-u).y0 + u.y1
z = (1-u).z0 + u.z1

Describes surface as u varies

Surfaces: Use two parameters u and v
P(u, v) = (x(u, v), y(u, v), z (u, v))
x = x(u,v), y = y(u,v), z = z(u,v)
Describes surface as both u and v vary

A curve segment

A surface patch
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Parametric vs. Implicit
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Parametric Form

Strengths:
parameters often have natural meaning

calculating slope
generating points on the curve
joining separate curves together
easier to apply affine transformations

Weaknesses:
point on curve tests are difficult
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Parametric Curves

described in general by a vector-valued function

we can define unit tangent and normal vectors as follows
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Parametric Surfaces

described in general by two varying parameters

Partial derivatives describe tangent plane at each point
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Parametric Polynomial Curves

Restrict x(u), y(u), z(u) to be polynomial in u
Fix degree n

each ck is a column vector
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Approximating Curves

Input: some control points
output: a parametric form curve

Important concepts:
Join points for segments and patches
Control points to interpolate
Tangents and smoothness
Blending functions to describe interpolation
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Cubic Polynomial Form

Degree 3 appears to be a useful compromise

Each ck is a column vector [cxk cyk czk]T

From control information (points, tangents) we can derive 12 
values for cxk, cyk, czk

These values determine cubic polynomial form
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Interpolation

Simplest case, although rarely used

Curves:
Given 4 control points p0, p1, p2, p3

All should lie on curve (cubic interpolation segment)
12 conditions, 12 unknowns

Space values for parameter 0 ≤ u ≤1 evenly: 0, 1/3, 2/3, 1
p0 = p(0), p1 = p(1/3), p2 = p(2/3), p3 = p(1)

a cubic interpolating curve
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Interpolation (2)

To determine the curve, we need to determine the How to 
determine values for ck
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Interpolation (3)
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Again note that pk and ck are vectors!
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Joining Interpolating Segments

Do not solve degree n for n points

Divide into overlap sequences of 4 points
p0, p1, p2, p3 then p3, p4, p5, p6, etc.

At join points
Will be continuous (C0 continuity)
Derivatives will usually not match (no C1 continuity)
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The Cubic Interpolation Patch

There is a natural extension of the interpolating curve to an 
interpolating patch
A Bicubic surface patch can be written in the form:

We have 16 three-dimensional control points, so we get three 
sets (x, y, z) of 16 equations in 16 unknowns!
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Hermite Curves

Another cubic polynomial curve
Specify

two endpoints
and their tangents
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Deriving the Hermite Form
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Deriving the Hermite Form (2)

Write in matrix form

Remember pk and p’k and ck are vectors!!!

we call A-1 MH , the Hermite geometry matrix
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Joining Hermite Curves

Match points and tangents (derivates)

Much smoother than point interpolation
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Bezier Curves

Widely used in computer graphics
Approximate tangents by using control points
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Equations for Bezier Curves

Set up equations for cubic parametric curve
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Equations for Bezier Curves (2)

Calculate Bezier geometry matrix (MB)
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Bezier Surface Patches

We can generate the Bezier surface patches having a 4x4 array 
of control points:
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Summary

Parametric Representations
Cubic Polynomial Forms
Interpolation
Hermite Curves
Bezier Curves and Surfaces


