
1

Nov 24, 2003 CMPT-361 : Hamid Younesy 1

Curves

Representations (Explicit, Implicit, Parametric)

Cubic polynomial form
Interpolating curves

Hermite Curves
Bezier Curves

Nov 24, 2003 CMPT-361 : Hamid Younesy 2

Motivation

Problems with series of points used to model a curve
large amounts of co-ordinate and connectivity information

difficult to exactly design smoothly varying shapes
piecewise linear - Does not accurately model a smooth line

it’s tedious
expensive to manipulate curve because all points must be 
repositioned

Need a compact and easily manipulated high-level 
representation of smoothly varying curves and surfaces
Must be internally convertible to line segment or polygon 
approximation for polygon-scan conversion rendering

Nov 24, 2003 CMPT-361 : Hamid Younesy 3

Goals

How do we specify a surface?
Explicit, implicit, parametric

How do we approximate a surface?
Interpolation (use only points)
Hermite (use points and tangents)
Bezier (use points, and more points for tangents)

Nov 24, 2003 CMPT-361 : Hamid Younesy 4

Explicit Representation

Curve in 2D: y = f(x)
Curve in 3D: y = f(x), z = g(x)
Surface in 3D: z = f(x,y)
Problems:

How about a vertical line x = c as y = f(x)?
Circle y = ±(r2 – x2)1/2 two or zero values for x

Too dependent on coordinate system
Rarely used in computer graphics

Nov 24, 2003 CMPT-361 : Hamid Younesy 5

Implicit Representation

Curve in 2D: f(x,y) = 0
Line: ax + by + c = 0
Circle: x2 + y2 – r2 = 0

Surface in 3d: f(x,y,z) = 0
Plane: ax + by + cz + d = 0
Sphere: x2 + y2 + z2 – r2 = 0

f(x,y,z) can describe 3D object:
Inside: f(x,y,z) < 0
Surface: f(x,y,z) = 0
Outside: f(x,y,z) > 0

Nov 24, 2003 CMPT-361 : Hamid Younesy 6

Algebraic Surfaces

Special case of implicit representation
f(x,y,z) is polynomial in x, y, z
Quadrics: degree of polynomial <= 2
Render more efficiently than arbitrary surfaces
Implicit form often used in computer graphics
How do we represent curves implicitly?



2

Nov 24, 2003 CMPT-361 : Hamid Younesy 7

Implicit and Explicit Representations

Weaknesses:
may have too many or too few solutions
affine transformations can be difficult
vertical tangents (infinite slope) present problems
difficult to join separate curves together smoothly

Strengths:
good for point on curve tests

Nov 24, 2003 CMPT-361 : Hamid Younesy 8

Parametric Form 

Curves: use single parameter u (e.g. time)
P(u) = (x(u), y(u), z(u))
x = x(u), y = y(u), z = z(u)
example: line:

P(u) = (1-u).P0 + u.P1
x = (1-u).x0 + u.x1
y = (1-u).y0 + u.y1
z = (1-u).z0 + u.z1

Describes surface as u varies

Surfaces: Use two parameters u and v
P(u, v) = (x(u, v), y(u, v), z (u, v))
x = x(u,v), y = y(u,v), z = z(u,v)
Describes surface as both u and v vary

A curve segment

A surface patch

Nov 24, 2003 CMPT-361 : Hamid Younesy 9

Parametric vs. Implicit

Nov 24, 2003 CMPT-361 : Hamid Younesy 10

Parametric Form

Strengths:
parameters often have natural meaning

calculating slope
generating points on the curve
joining separate curves together
easier to apply affine transformations

Weaknesses:
point on curve tests are difficult

Nov 24, 2003 CMPT-361 : Hamid Younesy 11

Parametric Curves

described in general by a vector-valued function

we can define unit tangent and normal vectors as follows
















=

)(

)(

)(

)(

uz

uy

ux

uP

















′
′
′

==′

′′
′′

=
′
′

=

)(

)(

)(

)()(

)(

)(
)(                  

)(

)(
)(

uz

uy

ux

up
du

d
up

up

up
un

up

up
ut

Nov 24, 2003 CMPT-361 : Hamid Younesy 12

Parametric Surfaces

described in general by two varying parameters

Partial derivatives describe tangent plane at each point
















=

),(

),(

),(

),(

vuz

vuy

vux

vuP























=























=

dv

vudz
dv

vudy
dv

vudx

vup
dv

d

du

vudz
du

vudy
du

vudx

vup
du

d

),(

),(

),(

),(                 

),(

),(

),(

),(



3

Nov 24, 2003 CMPT-361 : Hamid Younesy 13

Parametric Polynomial Curves

Restrict x(u), y(u), z(u) to be polynomial in u
Fix degree n

each ck is a column vector

∑
=

=
n

k

k
kucuP

0

)(
















=

zk

yk

xk

k

c

c

c

c

Nov 24, 2003 CMPT-361 : Hamid Younesy 14

Approximating Curves

Input: some control points
output: a parametric form curve

Important concepts:
Join points for segments and patches
Control points to interpolate
Tangents and smoothness
Blending functions to describe interpolation

Nov 24, 2003 CMPT-361 : Hamid Younesy 15

Cubic Polynomial Form

Degree 3 appears to be a useful compromise

Each ck is a column vector [cxk cyk czk]T

From control information (points, tangents) we can derive 12 
values for cxk, cyk, czk

These values determine cubic polynomial form

3
3

2
210

3

0

)( ucucuccucup
k

k
k +++==∑

=

Nov 24, 2003 CMPT-361 : Hamid Younesy 16

Interpolation

Simplest case, although rarely used

Curves:
Given 4 control points p0, p1, p2, p3

All should lie on curve (cubic interpolation segment)
12 conditions, 12 unknowns

Space values for parameter 0 ≤ u ≤1 evenly: 0, 1/3, 2/3, 1
p0 = p(0), p1 = p(1/3), p2 = p(2/3), p3 = p(1)

a cubic interpolating curve

Nov 24, 2003 CMPT-361 : Hamid Younesy 17

Interpolation (2)

To determine the curve, we need to determine the How to 
determine values for ck





































=



















⇒
+++==

+++==

+++==

==
⇒+++=

3

2

1

0

3
3

22
3

2

3

2

3
3

12
3

1

3

1

3

2

1

0

32103

3
3

3

2
2

2
3

2
13

2
03

2
2

3
3

3

1
2

2
3

1
13

1
03

1
1

00

3
3

2
210

1111

)()(1

)()(1

0001

     

)1(

)()()(

)()()(

)0(

)(

c

c

c

c

p

p

p

p

ccccpp

ccccpp

ccccpp

cpp

ucucuccup

note: pk and ck are vectors

Nov 24, 2003 CMPT-361 : Hamid Younesy 18

Interpolation (3)





































−−
−

−−
=



















=⇒= −

3

2

1

0

3

2

1

0

1

5.45.135.135.4

5.4185.229

15.495.5

0001

:matrixgeometry  inginterpolatobtain  A toinvert 

p

p

p

p

c

c

c

c

pAcAcp

Again note that pk and ck are vectors!



4

Nov 24, 2003 CMPT-361 : Hamid Younesy 19

Joining Interpolating Segments

Do not solve degree n for n points

Divide into overlap sequences of 4 points
p0, p1, p2, p3 then p3, p4, p5, p6, etc.

At join points
Will be continuous (C0 continuity)
Derivatives will usually not match (no C1 continuity)

Nov 24, 2003 CMPT-361 : Hamid Younesy 20

The Cubic Interpolation Patch

There is a natural extension of the interpolating curve to an 
interpolating patch
A Bicubic surface patch can be written in the form:

We have 16 three-dimensional control points, so we get three 
sets (x, y, z) of 16 equations in 16 unknowns!

















==∑∑
= =

ijz

ijy

ijx

ij
i

ij
j

j

i

c

c

c

ccvuvup   :    where),(
3

0

3

0

Nov 24, 2003 CMPT-361 : Hamid Younesy 21

Hermite Curves

Another cubic polynomial curve
Specify

two endpoints
and their tangents

Nov 24, 2003 CMPT-361 : Hamid Younesy 22

Deriving the Hermite Form

3213

102
321

32103

003
3

2
210

32)1(

)0(
      32)(

:derivative Calculate

)1(

)0(
)(

:before As

cccpp

cpp
ucuccup

ccccpp

cpp
ucucuccup

++=′=′
=′=′

⇒++=′

+++==
==

⇒+++=

We have two points p(0) and p(1), we use p0 and p3 for 
numbering to be consistent with the interpolation notion

w
e 

go
t t

h
e 

fo
ur

 e
qu

at
io

ns
 w

e 
n

ee
de

d

Nov 24, 2003 CMPT-361 : Hamid Younesy 23

Deriving the Hermite Form (2)

Write in matrix form

Remember pk and p’k and ck are vectors!!!

we call A-1 MH , the Hermite geometry matrix

qAcAcq

c

c

c

c

p

p

p

p

1

3

2

1

0

3

0

3

0

or     

3210

1110

1111

0001

−=⇒=





































=



















′
′



















−
−−−

==

1122

1233

0100

0001

 :  where HH MqMc

Nov 24, 2003 CMPT-361 : Hamid Younesy 24

Joining Hermite Curves

Match points and tangents (derivates)

Much smoother than point interpolation



5

Nov 24, 2003 CMPT-361 : Hamid Younesy 25

Bezier Curves

Widely used in computer graphics
Approximate tangents by using control points

)(3)1(

)(3)0(

23

3

1
23

01

3

1
01

pp
pp

p

pp
pp

p

−=−=′

−=−=′

Nov 24, 2003 CMPT-361 : Hamid Younesy 26

Equations for Bezier Curves

Set up equations for cubic parametric curve

321

12
321

3210

03
3

2
210

32)2(3)3(3)1(

)0(3)1(3)0(
      32)(

:derivative Calculate

)1(

)0(
)(

:before As

cccppp

cppp
ucuccup

ccccp

cp
ucucuccup

++=−=′
=−=′

⇒++=′

+++=
=

⇒+++=

Nov 24, 2003 CMPT-361 : Hamid Younesy 27

Equations for Bezier Curves (2)

Calculate Bezier geometry matrix (MB)



















−−
−

−
=



















=



















1331

0363

0133

0001

 : where 

3

2

1

0

3

2

1

0

BB M

p

p

p

p

M

c

c

c

c

Nov 24, 2003 CMPT-361 : Hamid Younesy 28

Bezier Surface Patches

We can generate the Bezier surface patches having a 4x4 array 
of control points:

Nov 24, 2003 CMPT-361 : Hamid Younesy 29

Summary

Parametric Representations
Cubic Polynomial Forms
Interpolation
Hermite Curves
Bezier Curves and Surfaces


