Curves

Representations (Explicit, Implicit, Parametric)
Cubic polynomial form

Interpolating curves

Hermite Curves

Bezier Curves

Motivation
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Problems with series of points used to model a curve
large amounts of co-ordinate and connectivity information
difficult to exactly design smoothly varying shapes
piecewise linear - Does not accurately model a smooth line
it's tedious

expensive to manipulate curve because all points must be
repositioned

Need a compact and easily manipulated high-level
representation of smoothly varying curves and surfaces
Must be internally convertible to line segment or polygon
approximation for polygon-scan conversion rendering
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Goadls

How do we specify a surface?
= Explicit, implicit, parametric
How do we approximate a surface?
= Interpolation (use only points)
= Hermite (use points and tangents)
= Bezier (use points, and more points for tangents)
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Explicit Representation

Curve in 2D:y = f(x)
Curve in 3D:y = f(x), z = g(x)
Surface in 3D: z = f(x,y)

Problems:

= How about a vertical line x = c as y = f(x)?

= Circle y = +(r2 — x2)2 two or zero values for x
Too dependent on coordinate system
Rarely used in computer graphics
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Implicit Representation

Curve in 2D: f(x,y) =0

= Line:ax+by+c=0

= Circle: X2 +y2—-r2=0
Surface in 3d: f(x,y,z) =0

= Plane:ax+by+cz+d=0

= Sphere:x? +y?+2z2—-r2=0
f(x,y,z) can describe 3D object:
= Inside: f(x,y,z) <0

= Surface: f(x,y,z) =0

= Outside: f(x,y,z) > 0
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Algebraic Surfaces

Special case of implicit representation

f(x,y,z) is polynomial in x, y, z

Quadrics: degree of polynomial <= 2

Render more efficiently than arbitrary surfaces
Implicit form often used in computer graphics
How do we represent curves implicitly?
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Implicit and Explicit Representations

Weaknesses:
= may have too many or too few solutions
= affine transformations can be difficult
= vertical tangents (infinite slope) present problems
= difficult to join separate curves together smoothly
Strengths:
= good for point on curve tests
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Parametric Form

Curves: use single parameter u (e.g. time) 2
= P(u) = (x(u), y(u), (u)) a3
= x=xW),y =y(u), 2= 2z(u)
= example: line: P
P(u) = (1-u).Py + u.P,
X = (L-U).Xp + U.Xy
y = (1-u).yo + Uy,
z=(1-u).zy +u.z;
= Describes surface as u varies

A curve segment

Surfaces: Use two parameters u and v
= P(u, V) = (x(u, v), y(u, v), Z (U, V)
= x=x(uyv), y =yuyv), z=z(u,v)
= Describes surface as both u and v vary

Asurface patch
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Parametric vs. Implicit

Parametric Circle Implicit Circle

Parametric Form

Strengths:
= parameters often have natural meaning
= calculating slope
= generating points on the curve
= joining separate curves together
= easier to apply affine transformations

Weaknesses:
= point on curve tests are difficult
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Parametric Curves

described in general by a vector-valued function

X(u)
P(u) = y(u)
z(u)

we can define unit tangent and normal vectors as follows

) =P )]
o) " Tl
d X(u)
P =g, PW =y
Z(u)
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Parametric Surfaces

described in general by two varying parameters

X(u,v)
P(u,v) =| y(u,v)
2(u,v)

Partial derivatives describe tangent plane at each point

dx(u,v) dx(u,v)
d E’Y?u ) d UY?V )
= By 9 o) = Y
L ey @ Puv Y
dz(u,v) dz(u,v)
du dv
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Parametric Polynomial Curves

Restrict x(u), y(u), z(u) to be polynomial in u
Fix degree n

P(u) = kZi:t:kuk

each ¢, is a column vector
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Approximating Curves

Input: some control points
output: a parametric form curve

Important concepts:

= Join points for segments and patches

= Control points to interpolate

= Tangents and smoothness

= Blending functions to describe interpolation

Nov 24, 2003 CMPT-361: Hamid Younesy 1

Cubic Polynomial Form

Degree 3 appears to be a useful compromise

3
p(U) =Y qu =g +ou+cu’ +eu’
k=0

Each ¢, is a column vector [ €y ¢,d"

From control information (points, tangents) we can derive 12
values for ¢y, Cy, Cy

These values determine cubic polynomial form
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Interpolation

Simplest case, although rarely used

Curves:
= Given 4 control points p,, P;, P,, P3
= All should lie on curve (cubic interpolation segment)
= 12 conditions, 12 unknowns

Space values for parameter 0 < u <1 evenly: 0, 1/3, 2/3, 1
Po = P(0), p; = p(1/3), p, = p(2/3), ps = p(1)

Pam,
Pa

acubic interpolating curve
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Interpolation (2)

Interpolation (3)

To determine the curve, we need to determine the How to
determine values for ¢,

p(U) =y +u+c,u’ +ou =

P = p0) =¢,

P= PR =6 +36 + (e + (B

P, = PB) = ¢+ 36+ (3)’c, +(5)’°cy

Ps=pd)=c+G+c+c

=
Bl Lo 0 o

pl_|1 3 @ Qe

p, | |1 2@ @ note: p, and ¢, are vectors
p (11 1 ¢
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p=Ac=c=A"p
invert A toobtain interpolating geometry matrix :

G 1 0 0o 0

¢| |-55 9 -45 1
| | 9 -225 18 45|p
c| |-45 135 -135 45|p,

s 3

N

Again note that p, and c, are vectors!
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Joining Interpolating Segments

Do not solve degree n for n points
Divide into overlap sequences of 4 points
Po» P1, P2, P3 then pg, g, Ps, Ps, etc.

e
- T,
Py

. S
Py Mﬂ P

P2

At join points
= Will be continuous (C° continuity)
= Derivatives will usually not match (no C* continuity)
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Hermite Curves

Another cubic polynomial curve

Specify
= two endpoints
= and their tangents

plo)

plo) x
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Deriving the Hermite Form (2)

Write in matrix form
Remember p, and p’, and c, are vectors!!!

p] M1 0 0 0ofc
1111
p’3= K o g=Ac=>c=A"g
Po 011 1fc
P 01 2 3¢

we call A M, , the Hermite geometry matrix

1 0 0 O
0o 0 1 o0
c=M,q where:M, = 33 -2 1
2 -2 1 1
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The Cubic Interpolation Patch

There is a natural extension of the interpolating curve to an
interpolating patch
A Bicubic surface patch can be written in the form:

Gix
3 3
p(u,v)=> Y uvic, where: ; =|c,,
i i
G

i
We have 16 three-dimensional control points, so we get three
sets (X, y, z) of 16 equations in 16 unknowns!
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Deriving the Hermite Form

We have two points p(0) and p(1), we use p, and p, for
numbering to be consistent with the interpolation notion

Asbefore:

P, = p(0) =¢,

p(u) = ¢, +Cu+cu? +cu’ =
o = b =g e ve e,

Calculatederivative:

P =P0)=¢

'(u)=c, +2cu+3cu’ =
PUZa 2eutsel = o o =g 2+
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we got the four equations we needed

Joining Hermite Curves

Match points and tangents (derivates)
pi1i= qlo)

pil) =q(0}
Qi1

plo)

Much smoother than point interpolation
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Bezier Curves

Widely used in computer graphics
Approximate tangents by using control points

p@=PTP=gp-p)

I ol

P,

po=PTP=3p,-p)

Py

wir|
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Equations for Bezier Curves (2)

Calculate Bezier geometry matrix (Mg)

Equations for Bezier Curves

Set up equations for cubic parametric curve
As before:

pO0) =c,

U) =¢, + QU+ U +oU’ =
PU) =Gy +GU+Cu” +cy PO =G+ +C,+C,

Calculatederivative:
p'(0)=3p(1)-3p(0) =¢,

P 23’ = ) —ap@-3p@) =c + 26, +3c,
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Bezier Surface Patches

We can generate the Bezier surface patches having a 4x4 array
of control points:
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G, Po 1 0 0 O

G =My P where:M, = s 1o

c, [ 3 -6 3 0

C,y [N -1 3 -31
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Summary

Parametric Representations
Cubic Polynomial Forms
Interpolation

Hermite Curves

Bezier Curves and Surfaces
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