
1

Nov 17, 2003 CMPT-361 : Hamid Younesy 1

Ray Tracing

Ray casting

Geometrical representations
Shadow

Reflection

Transmission / Refraction
Antialiasing

Nov 17, 2003 CMPT-361 : Hamid Younesy 2

Graphical Pipeline: Local Illumination

List all the triangles to draw
Get rid of a maximum of triangles
Clip
Compute the illumination at the vertex of the triangle:

Local Illumination Model:
Light from a source is reflected off a surface towards the “eye”

only one interaction of light at a surface on its way from a light
source to the “eye”

Nov 17, 2003 CMPT-361 : Hamid Younesy 3

Global Illumination

A point is illuminated by more than light from local lights; it is
illuminated by all the emitters and reflectors in the global scene

Global Illumination attempts to account for light reflected at a
point towards the eye given all the illumination incident at that
point

Brute-force solution:
for all light sources

for all light rays in all directions

trace ray until it hits screen or “leaves the room”

Two established algorithm:
Ray Tracing
Radiosity

Nov 17, 2003 CMPT-361 : Hamid Younesy 4

Global Illumination “Rendering Equation”

Jim Kajiya (Director in Microsoft Research)
developed this in 1986

I(x, x’) is the total intensity from point x’ to x
g(x, x’) = 0 when x-x’ is occluded (shadow)
ε(x, x’) is the intensity emitted by x’ to x
ρ(x, x’,x’’) is the intensity of light reflected from x’’ to x through x’
S is all points on all surfaces

() () () () ()

+= ∫

S

dxxxIxxxxxxxgxxI '''',''',',',',', ρε

Nov 17, 2003 CMPT-361 : Hamid Younesy 5

Simulating Rays of Light

We can render the scene by simulating all physical
light transport:

light source shoots rays in all directions
rays bounce when they hit surfaces
can ignore rays when

they fly off into empty space
almost all of their energy is absorbed

record rays that strike the image plane

we call this kind of simulation forward ray tracing

Nov 17, 2003 CMPT-361 : Hamid Younesy 6

Simulating Rays of Light (2)

Problem with forward ray tracing:
it can be extremely slow

only a tiny fraction of light rays actually strike the eye

Fortunately, there’s a simple solution to this problem
we only care about light rays that eventually strike the eye
so shoot rays from the eye out into the world

just reverse arrows on the ray diagram

Traditionally, most ray-based

renderers take this approach

2

Nov 17, 2003 CMPT-361 : Hamid Younesy 7

Ray Casting

Ray casting: Very simple ray based rendering:

for all pixels (x,y)

compute ray from eye through (x,y)

compute intersections with all surfaces

find surface with closest intersection

shade this surface point (standard illumination equation)

write this color into pixel (x,y)

we need to resolve:
how to represent rays & generate rays through screen
how to compute intersections with objects in the world

Nov 17, 2003 CMPT-361 : Hamid Younesy 8

Ray Casting: Light Rays

geometrically, a ray is a starting point plus a direction which can
be described as:

x(t) = p + td (t >0)

each ray will return some amount of light (RGB color) from the
world

d (ray direction)

p (origin of ray)

Nov 17, 2003 CMPT-361 : Hamid Younesy 9

Ray Casting: Ray-Surface Intersection

general idea:
write equation for point on both ray and surface

surface: f(x) = 0

ray: x(t) = p + td

substitute the ray equation into the surface equation
f(p + td) = 0

Solve for t:
t = …

Substitute the computed value of t back to the ray equation
x(t) = …

Nov 17, 2003 CMPT-361 : Hamid Younesy 10

Ray Casting: Ray-Plane Intersection

equation for plane:

substitute the ray equation:

0.

],,[, 0

=+⇒
==+++

DxN

CBANDCkBjAi

dN

DpN
t

DdNtpN

DtdpN

.

).(

0).(.

0).(

+−=

=++
=++

Nov 17, 2003 CMPT-361 : Hamid Younesy 11

Ray Casting: Ray-Polygon Intersection

First find the intersection of the ray and the polygon's plane

Then determine whether this point is in the polygon:
For general convex polygons, we can use half-space tests

construct lines (ax+by+c=0) through each edge of the polygon

oriend all line normals consistently (either all point in or all point
out)
the point (x, y) is in the polygon if:

aix+biy+ci all have the same sign

Nov 17, 2003 CMPT-361 : Hamid Younesy 12

Pseudo-Code Outline of A Minimal Ray Caster

void raycast()
for all pixels (x,y)

image(x,y) = trace(compute_eye_ray(x,y))

rgbColor trace(ray r)
for all surfaces s

t = compute_intersection(r, s)
closest_t = MIN(closest_t, t)

if(hit_an_object)
return shade(s, r, closest_t)

else
return background_color

rgbColor shade(surface s, ray r, double t)
point x = r(t)
// evaluate (Phong) illumination equation
return color

3

Nov 17, 2003 CMPT-361 : Hamid Younesy 13

From Ray Casting to Ray Tracing

We’ve found the nearest surface hit for a given ray
now we want to shade this point
for each light, we evaluate our diffuse & specular terms

For a given light, the point may or may not be in shadow
if it is in shadow, don’t add contribution for this light

We can easily test whether we’re in shadow
trace a new shadow ray, starting at this point
heading towards the given light
hit any surface closer than light?

yes: we’re in shadow
else: no shadow

Nov 17, 2003 CMPT-361 : Hamid Younesy 14

From Ray Casting to Ray Tracing

Shadows
Specular reflection
Specular transmission

General strategy:
recursively trace rays to evaluate shading

Nov 17, 2003 CMPT-361 : Hamid Younesy 15

Ray Tracing – Shadows

We've found the nearest surface hit for a given ray

now we want to shade this point:

for each light

if the point is in shadow
don't add contribution for this light

else
evaluate diffuse and specular values

use all light contributions to shade the point

Question: How to test whether we are in shadow?

Nov 17, 2003 CMPT-361 : Hamid Younesy 16

Ray Tracing – Shadows (2)

How to test whether we are in shadow?

for each light
create a new shadow ray

starting at this point
heading towards the given light

trace the shadow ray:
if ray hits any surface closer than light

we are in shadow

else
no shadow, evaluate illumination

Nov 17, 2003 CMPT-361 : Hamid Younesy 17

Ray Tracing – Reflections

If we are tracing rays, we can easily compute correct reflections:

at a given point, the perfect reflected direction is

R = I – 2(N.I)N
trace a ray going in that direction
the returned color is the reflection

Remember to keep in mind:
these arrows are the tracing direction
light is propagating in opposite direction

I R

N

Nov 17, 2003 CMPT-361 : Hamid Younesy 18

Ray Tracing – Refraction of Light

Rays transitioning between materials are bent around normal

Every material has an index of refraction:

Angles with surface normal obey Snell's Law

2.417diamond

1.5-1.6glass

1.36ethyl alcohol

1.333water

1.309ice

1.0vacuum

Index of refractionMaterial

i

t
ti

t

i

η
ηη

θ
θ ==

sin

sin

η

T

I
N

θi

θt

θi

4

Nov 17, 2003 CMPT-361 : Hamid Younesy 19

Ray Tracing – Refraction of Light (2)

Refractive indices determine amount of bending
going from low index to higher index (air to glass)
ray is bent towards the normal
going from high index to lower index (glass to water)
ray is bent away from the normal

Technically, this is a function of wavelength

That‘s why prisms work and why we see rainbows

usually for our purposes we'll ignore this detail, unless we
implement lights as spectrums of wavelengths

Nov 17, 2003 CMPT-361 : Hamid Younesy 20

Ray Tracing – Refraction of Light (3)

Angles of incoming and transmitted rays obey Snell's Law

with a little math, we can derive the transmitted direction

where

i

t
ti

t

i

η
ηη

θ
θ ==

sin

sin

NccIT))1(1(22 −+−+= ηηη

t

i
i INc

η
ηηθ =−== and .cos

T

I
N

θi

θt

Nov 17, 2003 CMPT-361 : Hamid Younesy 21

Classification of Rays

We've now seen four kinds of rays in the world

eye rays that leave the eye through a pixel
reflected rays that bounce off surfaces
transmitted rays that travel through them

shadow rays which test for occluders

Every surface intersection spawns
1 reflected ray

1 transmitted ray
1 shadow ray per light

recursive ray tracing spawns a whole tree of rays

Nov 17, 2003 CMPT-361 : Hamid Younesy 22

Outline of A Simple Ray Tracer

void raycast()

for all pixels (x,y)

image(x,y) = trace(compute_eye_ray(x,y))

rgbColor trace(ray r)

for all surfaces s

t = compute_intersection(r, s)

closest_t = MIN(closest_t, t)

if(hit_an_object)

return shade(s, r, closest_t)

else

return background_color

This all looks like a simple ray caster except …

Nov 17, 2003 CMPT-361 : Hamid Younesy 23

Outline of A Simple Ray Tracer (2)

… shading:

rgbColor shade(surface s, ray r, double t)

point x = r(t)

rgbColor color = black

for each light source L
if(closest_hit(shadow_ray(x, L)) >= distance(L))

color += shade_phong(s, x)

color += k_specular * trace(reflected_ray(s,r,x))

color += k_transmit * trace(transmitted_ray(s,r,x))

return color

Nov 17, 2003 CMPT-361 : Hamid Younesy 24

Antialiasing with Ray Tracing

Simple approach to antialiasing
render at a higher resolution than desired
down-sample to output resolution

This is particularly convenient to accomplish in ray tracing
we can supersample every pixel
instead of shooting 1 ray through the center of pixel
we can shoot k rays through different parts of the sample pixel

Typically
we subdivide every pixel into a uniform grid
shoot a ray through each sub-pixel

5

Nov 17, 2003 CMPT-361 : Hamid Younesy 25

Antialiasing with Ray Tracing (2)

Nov 17, 2003 CMPT-361 : Hamid Younesy 26

Antialiasing with Ray Tracing (3)

for better results, we typically jitter every sub-pixel sample
rather than shooting ray through the center of the sub-pixel

add a random offset away from the center
this helps reduce aliasing by adding noise to the result

